gentone

Generate a tone from a note or frequency.


gentone

/

src

/

main.cc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
/*
                                    88888888
                                  888888888888
                                 88888888888888
                                8888888888888888
                               888888888888888888
                              888888  8888  888888
                              88888    88    88888
                              888888  8888  888888
                              88888888888888888888
                              88888888888888888888
                             8888888888888888888888
                          8888888888888888888888888888
                        88888888888888888888888888888888
                              88888888888888888888
                            888888888888888888888888
                           888888  8888888888  888888
                           888     8888  8888     888
                                   888    888

                                   OCTOBANANA

Licensed under the MIT License

Copyright (c) 2020 Brett Robinson <https://octobanana.com/>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/

#include "info.hh"
#include "ob/parg.hh"
#include "ob/term.hh"
#include "ob/prism.hh"
#include "ob/string.hh"

#include <SFML/Audio.hpp>

#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <cassert>
#include <csignal>

#include <chrono>
#include <thread>
#include <limits>
#include <string>
#include <vector>
#include <sstream>
#include <iomanip>
#include <iostream>
#include <type_traits>

// #define dbg(x) std::cerr << "DBG> "#x": " << (x) << "\n"

using Parg = OB::Parg;
namespace Term = OB::Term;
namespace iom = OB::Term::iomanip;
namespace aec = OB::Term::ANSI_Escape_Codes;

bool is_term {false};
bool use_color {false};
std::size_t cursor_y {0};

std::vector<std::string> const channel_str {
  "unknown",
  "mono",
  "stereo",
  "left",
  "right",
};

struct Channel {
  enum Type {
    Mono = 1,
    Stereo = 2,
    Left = 3,
    Right = 4,
  };
};

struct Track {
  sf::SoundBuffer buf;
  sf::Sound sound;
};

struct Wave {
  int num_channels {0};
  int sample_rate {0};
  int num_samples {0};
  std::vector<short> samples;
};

struct Data {
  std::string graphic;
  double a4 {0};
  double sos {0};
  std::string note;
  double freq {0};
  double size {0};
  std::string wave;
  int rate {0};
  double ampl {0};
  int chan {0};
  double time {0};
  bool loop {false};
};

template <typename T = std::chrono::milliseconds>
void sleep(T const& duration) {
  std::this_thread::sleep_for(duration);
}

template<typename T>
static typename std::enable_if<!std::numeric_limits<T>::is_integer, bool>::type almost_equal(T x, T y, int z = 2) {
  return std::fabs(x - y) <= std::numeric_limits<T>::epsilon() * std::fabs(x + y) * z || std::fabs(x - y) < std::numeric_limits<T>::min();
}


template<typename T>
T scale(T const val, T const in_min, T const in_max, T const out_min, T const out_max) {
  assert(in_min <= in_max);
  assert(out_min <= out_max);
  return (out_min + (out_max - out_min) * ((val - in_min) / (in_max - in_min)));
}

void signal_handler(int signal);
std::string term_fg(OB::Prism::RGBA rgba);
std::string term_bg(OB::Prism::RGBA rgba);
void smooth_samples(Wave& wave);
std::string freq_to_note(double const freq, double const a4 = 440.0);
double note_to_freq(std::string const& note, double const a4 = 440.0);
Wave make_wave(Data const& data);
Track make_track(Wave const& wave, bool const loop);
bool is_playing(Track const& track);
void draw_wave(Wave const& wave, Data const& data, Track const* track = nullptr);
void save_to_file(Wave const& wave, std::string const& output);
Data make_data(Parg& pg);
void print_data(Data const& data);

void signal_handler(int signal) {
  std::cout << aec::clear;
  if (cursor_y > 0) {
    std::cout << aec::cursor_set(1, cursor_y);
  }
  std::cout << "\n" << aec::cursor_show << std::flush;
  std::exit(1);
}

std::string term_fg(OB::Prism::RGBA rgba) {
  std::string s;
  s += "\x1b[38;2;";
  s += std::to_string(static_cast<int>(rgba.r()));
  s += ";";
  s += std::to_string(static_cast<int>(rgba.g()));
  s += ";";
  s += std::to_string(static_cast<int>(rgba.b()));
  s += "m";
  return s;
}

std::string term_bg(OB::Prism::RGBA rgba) {
  std::string s;
  s += "\x1b[48;2;";
  s += std::to_string(static_cast<int>(rgba.r()));
  s += ";";
  s += std::to_string(static_cast<int>(rgba.g()));
  s += ";";
  s += std::to_string(static_cast<int>(rgba.b()));
  s += "m";
  return s;
}

void smooth_samples(Wave& wave) {
  for (auto it = wave.samples.rbegin(); it != wave.samples.rend(); ++it) {
    if (*it <= 0) {
      auto dist = std::distance(wave.samples.rbegin(), std::prev(it));
      wave.num_samples -= dist;
      wave.samples.erase(it.base(), std::rbegin(wave.samples).base());
      break;
    }
  }
}

std::string freq_to_note(double const freq, double const a4) {
  if (freq <= 0) {throw std::runtime_error("invalid freq '" + std::to_string(freq) + "'");}
  std::unordered_map<int, std::string> const c_offset {
    { 0, "C"}, { 1, "C#"},
    { 2, "D"}, { 3, "D#"},
    { 4, "E"},
    { 5, "F"}, { 6, "F#"},
    { 7, "G"}, { 8, "G#"},
    { 9, "A"}, {10, "A#"},
    {11, "B"},
  };
  int const semitones {static_cast<int>(std::round(std::log(freq / a4) / std::log(std::pow(2.0, 1.0 / 12.0))) + 57)};
  std::size_t const offset {static_cast<std::size_t>(semitones % 12)};
  int const octave {semitones / 12};
  return c_offset.at(offset) + std::to_string(octave);
}

double note_to_freq(std::string const& note, double const a4) {
  auto m = OB::String::match(OB::String::lowercase(note), std::regex("^([a-g]{1}(?:[b#]{0,1}?))([0-9]+)$"));
  if (!m) {throw std::runtime_error("invalid note '" + note + "'");}
  std::unordered_map<std::string, int> const note_offset {
    {"cb", 11}, {"c",  0}, {"c#",  1},
    {"db",  1}, {"d",  2}, {"d#",  3},
    {"eb",  3}, {"e",  4}, {"e#",  5},
    {"fb",  5}, {"f",  5}, {"f#",  6},
    {"gb",  6}, {"g",  7}, {"g#",  8},
    {"ab",  8}, {"a",  9}, {"a#", 10},
    {"bb", 10}, {"b", 11}, {"b#",  0},
  };
  int const octave {std::stoi((*m)[2])};
  int const offset {note_offset.at((*m)[1])};
  int const semitones {(octave * 12) + offset - 57};
  return 0.01 * std::round((a4 * std::pow(std::pow(2.0, 1.0/12.0), semitones)) * 100.0);
}

Wave make_wave(Data const& data) {
  Wave wave {data.chan > 2 ? 2 : data.chan, data.rate, 0, std::vector<short>()};
  int const bits {16};
  bool const sign {true};
  double const max_amplitude {(std::pow(2, (sign ? bits - 1 : bits))) - 1};
  std::size_t const size {static_cast<std::size_t>((data.time < 1 ? 1 : data.time) * wave.sample_rate)};
  wave.num_samples += static_cast<int>(size) * wave.num_channels;
  wave.samples.reserve(static_cast<std::size_t>(wave.num_samples));

  if (data.wave == "sine") {
    for (std::size_t i = 0; i < size; ++i) {
      for (std::size_t j = 0; j < static_cast<std::size_t>(wave.num_channels); ++j) {
        if (((data.chan == Channel::Right) && (j == 0)) || ((data.chan == Channel::Left) && (j == 1))) {
          wave.samples.emplace_back(0);
        }
        else {
          auto const sample {data.ampl * max_amplitude * std::sin((2.0 * M_PI * (data.freq / wave.sample_rate * i)))};
          wave.samples.emplace_back(sample);
        }
      }
    }
  }
  else if (data.wave == "triangle") {
    for (std::size_t i = 0; i < size; ++i) {
      for (std::size_t j = 0; j < static_cast<std::size_t>(wave.num_channels); ++j) {
        if (((data.chan == Channel::Right) && (j == 0)) || ((data.chan == Channel::Left) && (j == 1))) {
          wave.samples.emplace_back(0);
        }
        else {
          wave.samples.emplace_back(((2 * (data.ampl * max_amplitude)) / M_PI) * std::asin(std::sin((2 * M_PI * (data.freq / wave.sample_rate)) * i)));
        }
      }
    }
  }
  else if (data.wave == "square") {
    for (std::size_t i = 0; i < size; ++i) {
      for (std::size_t j = 0; j < static_cast<std::size_t>(wave.num_channels); ++j) {
        if (((data.chan == Channel::Right) && (j == 0)) || ((data.chan == Channel::Left) && (j == 1))) {
          wave.samples.emplace_back(0);
        }
        else {
          auto sample {std::sin((2.0 * M_PI * (data.freq / wave.sample_rate * i)))};
          if (sample >= 0) {
            sample = data.ampl * (max_amplitude - 1);
          }
          else if (sample < 0) {
            sample = data.ampl * -max_amplitude;
          }
          wave.samples.emplace_back(sample);
        }
      }
    }
  }
  else if (data.wave == "saw") {
    for (std::size_t i = 0; i < size; ++i) {
      for (std::size_t j = 0; j < static_cast<std::size_t>(wave.num_channels); ++j) {
        // TODO is the impl for saw wave generation correct?
        // f(x) = -1 * ((2 * a) / pi) * atan(cot(((x * pi) / p)))
        if (((data.chan == Channel::Right) && (j == 0)) || ((data.chan == Channel::Left) && (j == 1))) {
          wave.samples.emplace_back(0);
        }
        else {
          wave.samples.emplace_back(-1 * ((2 * (data.ampl * max_amplitude)) / M_PI) * std::atan(std::tan(M_PI_2 - (((i * M_PI) / (data.freq / wave.sample_rate))))));
        }
      }
    }
  }

  return wave;
}

Track make_track(Wave const& wave, bool const loop) {
  Track track;
  if (!track.buf.loadFromSamples(wave.samples.data(), static_cast<sf::Uint64>(wave.num_samples), static_cast<unsigned int>(wave.num_channels), static_cast<unsigned int>(wave.sample_rate))) {
    throw std::runtime_error("failed to load audio from sample");
  }
  track.sound.setLoop(loop);
  track.sound.setPitch(1);
  track.sound.setVolume(100);
  track.sound.setPosition(0, 0, 0);
  track.sound.setRelativeToListener(true);
  track.sound.setBuffer(track.buf);
  return track;
}

bool is_playing(Track const& track) {
  return track.sound.getStatus() == sf::Sound::Playing;
}

void draw_wave(Wave const& wave, Data const& data, Track const* track) {
  std::size_t width {0};
  std::size_t height {0};
  OB::Term::size(width, height);
  if (width > 20) {
    width -= 20;
    // TODO why isnt height under 10 evenly spacing notes
    height = height > 10 ? 10 : height - 2;

    std::cout << aec::cursor_hide << aec::cursor_up(1) << std::flush;

    std::size_t curs_x {0};
    std::size_t curs_y {0};
    aec::cursor_get(curs_x, curs_y);
    cursor_y = curs_y;

    std::size_t const wave_size {wave.samples.size() / static_cast<std::size_t>(wave.num_channels)};
    std::size_t const wave_period {static_cast<std::size_t>(std::round(wave.sample_rate / data.freq))};
    // TODO if screen size is smaller than wave period, scroll animate the wave
    for (std::size_t x = 0; x < width && x < wave_size && x < wave_period; ++x) {
      double s = wave.samples[(x * static_cast<std::size_t>(wave.num_channels)) + (data.chan == Channel::Right ? 1 : 0)];
      std::size_t const y {static_cast<std::size_t>(std::round(scale(s, -32768.0, 32767.0, 0.0, static_cast<double>(height))))};
      if (use_color) {
        OB::Prism::HSLA color {0, 100, 50, 1.0};
        color.h(color.h() - ((360.0 / height) * y));
        std::cout << aec::cursor_set(x + 21, curs_y - y) << aec::clear << term_fg(OB::Prism::RGBA(color)) << data.graphic;
      }
      else {
        std::cout << aec::cursor_set(x + 21, curs_y - y) << data.graphic;
      }
      if (track) {
        std::cout << std::flush;
        if (is_playing(*track)) {
          sleep(std::chrono::milliseconds(static_cast<int>(std::round(data.time * 1000 / (wave_period < width ? wave_period : width)))));
        }
      }
    }

    std::cout << aec::clear << aec::cursor_set(1, curs_y) << "\n" << aec::cursor_show << std::flush;
  }
}

void save_to_file(Wave const& wave, std::string const& output) {
  sf::SoundBuffer buf;
  if (!buf.loadFromSamples(wave.samples.data(), static_cast<sf::Uint64>(wave.num_samples), static_cast<unsigned int>(wave.num_channels), static_cast<unsigned int>(wave.sample_rate))) {
    throw std::runtime_error("failed to load audio from sample");
  }
  if (!buf.saveToFile(output)) {
    throw std::runtime_error("failed to save audio to '" + output + "'");
  }
}

Data make_data(Parg& pg) {
  // TODO validate all user passed args
  Data data;

  data.graphic = pg.get<std::string>("char");

  data.a4 = pg.get<double>("a4");
  data.sos = pg.get<double>("sos");

  {
    data.freq = data.a4;
    auto freq_str {pg.get_pos()};
    if (freq_str.size()) {
      try {
        data.freq = std::stod(freq_str);
      }
      catch (...) {
        data.freq = note_to_freq(freq_str);
      }
    }
  }

  {
    data.chan = Channel::Mono;
    auto chan_str = pg.get<std::string>("channels");
    if (chan_str == "2" || chan_str == "stereo") {
      data.chan = Channel::Stereo;
    }
    else if (chan_str == "left") {
      data.chan = Channel::Left;
    }
    else if (chan_str == "right") {
      data.chan = Channel::Right;
    }
  }

  data.time = pg.get<double>("time");
  data.loop = pg.get<bool>("loop");
  if (data.loop && data.time == 0) {data.time = 1;}

  data.wave = pg.get<std::string>("wave");
  data.rate = pg.get<int>("rate");
  data.ampl = pg.get<double>("amplitude");
  data.size = data.sos / data.freq;

  return data;
}

void print_data(Data const& data) {
  struct Style {
    std::string punc {aec::fg_true("c0c0c0")};
    std::string key {aec::fg_true("ff54ff")};
    std::string value {aec::fg_true("54ff54")};
    std::string unit {aec::fg_true("c0c0c0")};
  };
  Style style;

  auto const print_kv = [&](auto const& key, auto const& value) {
    std::cout << aec::wrap(key, style.key, use_color) << aec::wrap(": ", style.punc, use_color) << aec::wrap(value, style.value, use_color) << "\n";
  };

  auto const print_kvu = [&](auto const& key, auto const& value, auto const& unit) {
    std::cout << aec::wrap(key, style.key, use_color) << aec::wrap(": ", style.punc, use_color) << aec::wrap(value, style.value, use_color) << " " << aec::wrap(unit, style.unit, use_color) << "\n";
  };

  print_kvu("  a4", data.a4, "Hz");
  print_kvu(" sos", data.sos, "m/s");
  print_kv("note", freq_to_note(data.freq, data.a4));
  print_kvu("freq", data.freq, "Hz");
  print_kvu("size", data.size, "m");
  print_kv("wave", data.wave);
  print_kvu("rate", data.rate, "Hz");
  print_kv("ampl", data.ampl);
  print_kv("chan", channel_str.at(static_cast<std::size_t>(data.chan)));
  print_kvu("time", data.time, "s");
  print_kv("loop", data.loop);
}

int main(int argc, char** argv) {
  std::ios_base::sync_with_stdio(false);

  Parg pg {argc, argv};
  auto const pg_status {program_info(pg)};
  if (pg_status > 0) return 0;
  if (pg_status < 0) return 1;

  is_term = OB::Term::is_term(STDOUT_FILENO);
  use_color = pg.get<std::string>("colour") == "auto" ?
    is_term : pg.get<std::string>("colour") == "on";

  try {
    std::signal(SIGINT, signal_handler);
    std::signal(SIGTERM, signal_handler);

    auto data = make_data(pg);
    print_data(data);

    auto wave = make_wave(data);
    if (pg.find("output")) {
      save_to_file(wave, pg.get<std::string>("output"));
    }
    else if (data.time > 0.0) {
      auto track = make_track(wave, data.loop);
      track.sound.play();
      if (is_term) {draw_wave(wave, data, &track);}
      while (is_playing(track)) {sleep(std::chrono::milliseconds(20));}
    }
    else {
      if (is_term) {draw_wave(wave, data);}
    }
  }
  catch(std::exception const& e) {
    std::cerr
    << "\n"
    << aec::wrap("Error: ", pg.style.error, use_color)
    << e.what()
    << "\n";

    return 1;
  }
  catch(...) {
    std::cerr
    << "\n"
    << aec::wrap("Error: ", pg.style.error, use_color)
    << "an unexpected error occurred"
    << "\n";

    return 1;
  }

  return 0;
}
Back to Top