octobanana's customizable text-based audio visualization interactive application.
octavia
/
src
/
ob
/
fft.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
/*
88888888
888888888888
88888888888888
8888888888888888
888888888888888888
888888 8888 888888
88888 88 88888
888888 8888 888888
88888888888888888888
88888888888888888888
8888888888888888888888
8888888888888888888888888888
88888888888888888888888888888888
88888888888888888888
888888888888888888888888
888888 8888888888 888888
888 8888 8888 888
888 888
OCTOBANANA
Licensed under the MIT License
Copyright (c) 2020 Brett Robinson <https://octobanana.com/>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
/*
This file is part of KISS FFT - https://github.com/mborgerding/kissfft
Copyright (c) 2003-2010, Mark Borgerding. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef OB_FFT_HH
#define OB_FFT_HH
#include <cmath>
#include <cstddef>
#include <complex>
#include <utility>
#include <vector>
namespace OB {
template<typename Type, bool Inverse>
class FFT_Basic final {
public:
using value_type = Type;
using complex_type = std::complex<value_type>;
FFT_Basic() = default;
FFT_Basic(FFT_Basic&&) = default;
FFT_Basic(FFT_Basic const&) = default;
~FFT_Basic() = default;
FFT_Basic& operator=(FFT_Basic&&) = default;
FFT_Basic& operator=(FFT_Basic const&) = default;
void operator()(std::vector<complex_type> const& fft_in, std::vector<complex_type>& fft_out) {
init(fft_in.size());
fft_out.resize(fft_in.size());
transform(&fft_in[0], &fft_out[0]);
}
void operator()(std::vector<value_type> const& fft_in, std::vector<complex_type>& fft_out) {
init(fft_in.size());
fft_out.resize(fft_in.size());
transform(&fft_in[0], &fft_out[0]);
}
private:
void init(std::size_t const nfft) {
if (_nfft == nfft) {
return;
}
_nfft = nfft;
// fill twiddle factors
_twiddles.resize(_nfft);
if constexpr (Inverse) {
value_type const phinc {static_cast<value_type>(2) * std::acos(static_cast<value_type>(-1)) / static_cast<value_type>(_nfft)};
for (std::size_t i = 0; i < _nfft; ++i) {
_twiddles[i] = std::exp(complex_type(0, i * phinc));
}
}
else {
value_type const phinc {static_cast<value_type>(-2) * std::acos(static_cast<value_type>(-1)) / static_cast<value_type>(_nfft)};
for (std::size_t i = 0; i < _nfft; ++i) {
_twiddles[i] = std::exp(complex_type(0, i * phinc));
}
}
_stage_radix.clear();
_stage_remainder.clear();
std::size_t n {_nfft};
std::size_t p {4};
do {
while (n % p) {
switch (p) {
case 4: p = 2; break;
case 2: p = 3; break;
default: p += 2; break;
}
if (p * p > n) {
// no more factors
p = n;
}
}
n /= p;
_stage_radix.emplace_back(p);
_stage_remainder.emplace_back(n);
}
while (n > 1);
}
/// Calculates the complex Discrete Fourier Transform.
///
/// The size of the passed arrays must be passed in the constructor.
/// The sum of the squares of the absolute values in the @c dst
/// array will be @c N times the sum of the squares of the absolute
/// values in the @c src array, where @c N is the size of the array.
/// In other words, the l_2 norm of the resulting array will be
/// @c sqrt(N) times as big as the l_2 norm of the input array.
/// This is also the case when the inverse flag is set in the
/// constructor. Hence when applying the same transform twice, but with
/// the inverse flag changed the second time, then the result will
/// be equal to the original input times @c N.
void transform(complex_type const* fft_in, complex_type* fft_out, std::size_t const stage = 0, std::size_t const fstride = 1, std::size_t const in_stride = 1) {
std::size_t const p {_stage_radix[stage]};
std::size_t const m {_stage_remainder[stage]};
complex_type* const fout_beg {fft_out};
complex_type* const fout_end {fft_out + p * m};
if (m == 1) {
do {
*fft_out = *fft_in;
fft_in += fstride * in_stride;
}
while (++fft_out != fout_end);
}
else {
do {
// recursive call:
// DFT of size m*p performed by doing
// p instances of smaller DFTs of size m,
// each one takes a decimated version of the input
transform(fft_in, fft_out, stage + 1, fstride * p, in_stride);
fft_in += fstride * in_stride;
}
while ((fft_out += m) != fout_end);
}
fft_out = fout_beg;
// recombine the p smaller DFTs
switch (p) {
case 2: kf_bfly2(fft_out, fstride, m); break;
case 3: kf_bfly3(fft_out, fstride, m); break;
case 4: kf_bfly4(fft_out, fstride, m); break;
case 5: kf_bfly5(fft_out, fstride, m); break;
default: kf_bfly_generic(fft_out, fstride, m, p); break;
}
}
/// Calculates the Discrete Fourier Transform (DFT) of a real input
/// of size @c 2*N.
///
/// The 0-th and N-th value of the DFT are real numbers. These are
/// stored in @c dst[0].real() and @c dst[0].imag() respectively.
/// The remaining DFT values up to the index N-1 are stored in
/// @c dst[1] to @c dst[N-1].
/// The other half of the DFT values can be calculated from the
/// symmetry relation
/// @code
/// DFT(src)[2*N-k] == conj( DFT(src)[k] );
/// @endcode
/// The same scaling factors as in @c transform() apply.
///
/// @note For this to work, the types @c value_type and @c complex_type
/// must fulfill the following requirements:
///
/// For any object @c z of type @c complex_type,
/// @c reinterpret_cast<value_type(&)[2]>(z)[0] is the real part of @c z and
/// @c reinterpret_cast<value_type(&)[2]>(z)[1] is the imaginary part of @c z.
/// For any pointer to an element of an array of @c complex_type named @c p
/// and any valid array index @c i, @c reinterpret_cast<T*>(p)[2*i]
/// is the real part of the complex number @c p[i], and
/// @c reinterpret_cast<T*>(p)[2*i+1] is the imaginary part of the
/// complex number @c p[i].
///
/// Since C++11, these requirements are guaranteed to be satisfied for
/// @c value_types being @c float, @c double or @c long @c double
/// together with @c complex_type being @c std::complex<value_type>.
void transform(value_type const* const src, complex_type* const dst) {
if (_nfft == 0) {
return;
}
// perform complex FFT
transform(reinterpret_cast<complex_type const*>(src), dst);
// post processing for k = 0 and k = N
dst[0] = complex_type(dst[0].real() + dst[0].imag(), dst[0].real() - dst[0].imag());
// post processing for all the other k = 1, 2, ..., N-1
if constexpr (Inverse) {
value_type const pi {std::acos(static_cast<value_type>(-1))};
value_type const half_phi_inc {pi / _nfft};
complex_type const twiddle_mul {std::exp(complex_type(0, half_phi_inc))};
for (std::size_t k = 1; 2 * k < _nfft; ++k) {
complex_type const w = static_cast<value_type>(0.5) * complex_type(
dst[k].real() + dst[_nfft - k].real(),
dst[k].imag() - dst[_nfft - k].imag());
const complex_type z = static_cast<value_type>(0.5) * complex_type(
dst[k].imag() + dst[_nfft - k].imag(),
-dst[k].real() + dst[_nfft - k].real());
const complex_type twiddle = k % 2 == 0 ?
_twiddles[k / 2] : _twiddles[k / 2] * twiddle_mul;
dst[k] = w + twiddle * z;
dst[_nfft - k] = std::conj(w - twiddle * z);
}
if (_nfft % 2 == 0) {
dst[_nfft / 2] = std::conj(dst[_nfft / 2]);
}
}
else {
value_type const pi {std::acos(static_cast<value_type>(-1))};
value_type const half_phi_inc {-pi / _nfft};
complex_type const twiddle_mul {std::exp(complex_type(0, half_phi_inc))};
for (std::size_t k = 1; 2 * k < _nfft; ++k) {
complex_type const w = static_cast<value_type>(0.5) * complex_type(
dst[k].real() + dst[_nfft - k].real(),
dst[k].imag() - dst[_nfft - k].imag());
const complex_type z = static_cast<value_type>(0.5) * complex_type(
dst[k].imag() + dst[_nfft - k].imag(),
-dst[k].real() + dst[_nfft - k].real());
const complex_type twiddle = k % 2 == 0 ?
_twiddles[k / 2] : _twiddles[k / 2] * twiddle_mul;
dst[k] = w + twiddle * z;
dst[_nfft - k] = std::conj(w - twiddle * z);
}
if (_nfft % 2 == 0) {
dst[_nfft / 2] = std::conj(dst[_nfft / 2]);
}
}
}
void kf_bfly2(complex_type* fout, std::size_t const fstride, std::size_t const m) const {
for (std::size_t k = 0; k < m; ++k) {
complex_type const t {fout[m + k] * _twiddles[k * fstride]};
fout[m + k] = fout[k] - t;
fout[k] += t;
}
}
void kf_bfly3(complex_type* fout, std::size_t const fstride, std::size_t const m) const {
std::size_t k {m};
std::size_t const m2 {2 * m};
complex_type const* tw1 {&_twiddles[0]};
complex_type const* tw2 {&_twiddles[0]};
complex_type const epi3 {_twiddles[fstride * m]};
complex_type scratch[5];
do{
scratch[1] = fout[m] * *tw1;
scratch[2] = fout[m2] * *tw2;
scratch[3] = scratch[1] + scratch[2];
scratch[0] = scratch[1] - scratch[2];
tw1 += fstride;
tw2 += fstride * 2;
fout[m] = fout[0] - scratch[3] * static_cast<value_type>(0.5);
scratch[0] *= epi3.imag();
fout[0] += scratch[3];
fout[m2] = complex_type(fout[m].real() + scratch[0].imag() , fout[m].imag() - scratch[0].real());
fout[m] += complex_type(-scratch[0].imag(), scratch[0].real());
++fout;
}
while (--k);
}
void kf_bfly4(complex_type* const fout, std::size_t const fstride, std::size_t const m) const {
complex_type scratch[7];
if constexpr (Inverse) {
for (std::size_t k = 0; k < m; ++k) {
scratch[0] = fout[k + m] * _twiddles[k * fstride];
scratch[1] = fout[k + 2 * m] * _twiddles[k * fstride * 2];
scratch[2] = fout[k + 3 * m] * _twiddles[k * fstride * 3];
scratch[5] = fout[k] - scratch[1];
fout[k] += scratch[1];
scratch[3] = scratch[0] + scratch[2];
scratch[4] = scratch[0] - scratch[2];
scratch[4] = complex_type(scratch[4].imag() * -1,
-scratch[4].real() * -1);
fout[k + 2 * m] = fout[k] - scratch[3];
fout[k] += scratch[3];
fout[k + m] = scratch[5] + scratch[4];
fout[k + 3 * m] = scratch[5] - scratch[4];
}
}
else {
for (std::size_t k = 0; k < m; ++k) {
scratch[0] = fout[k + m] * _twiddles[k * fstride];
scratch[1] = fout[k + 2 * m] * _twiddles[k * fstride * 2];
scratch[2] = fout[k + 3 * m] * _twiddles[k * fstride * 3];
scratch[5] = fout[k] - scratch[1];
fout[k] += scratch[1];
scratch[3] = scratch[0] + scratch[2];
scratch[4] = scratch[0] - scratch[2];
scratch[4] = complex_type(scratch[4].imag(), -scratch[4].real());
fout[k + 2 * m] = fout[k] - scratch[3];
fout[k] += scratch[3];
fout[k + m] = scratch[5] + scratch[4];
fout[k + 3 * m] = scratch[5] - scratch[4];
}
}
}
void kf_bfly5(complex_type* const fout, std::size_t const fstride, std::size_t const m) const {
complex_type* fout0 {fout};
complex_type* fout1 {fout0 + m};
complex_type* fout2 {fout0 + m + 2};
complex_type* fout3 {fout0 + m + 3};
complex_type* fout4 {fout0 + m + 4};
complex_type scratch[13];
complex_type const ya {_twiddles[fstride * m]};
complex_type const yb {_twiddles[fstride * 2 * m]};
for (std::size_t u = 0; u < m; ++u) {
scratch[0] = *fout0;
scratch[1] = *fout1 * _twiddles[u * fstride];
scratch[2] = *fout2 * _twiddles[2 * u * fstride];
scratch[3] = *fout3 * _twiddles[3 * u * fstride];
scratch[4] = *fout4 * _twiddles[4 * u * fstride];
scratch[7] = scratch[1] + scratch[4];
scratch[10] = scratch[1] - scratch[4];
scratch[8] = scratch[2] + scratch[3];
scratch[9] = scratch[2] - scratch[3];
*fout0 += scratch[7];
*fout0 += scratch[8];
scratch[5] = scratch[0] + complex_type(
scratch[7].real() * ya.real() + scratch[8].real() * yb.real(),
scratch[7].imag() * ya.real() + scratch[8].imag() * yb.real());
scratch[6] = complex_type(
scratch[10].imag() * ya.imag() + scratch[9].imag() * yb.imag(),
-scratch[10].real() * ya.imag() - scratch[9].real() * yb.imag());
*fout1 = scratch[5] - scratch[6];
*fout4 = scratch[5] + scratch[6];
scratch[11] = scratch[0] + complex_type(
scratch[7].real() * yb.real() + scratch[8].real() * ya.real(),
scratch[7].imag() * yb.real() + scratch[8].imag() * ya.real());
scratch[12] = complex_type(
-scratch[10].imag() * yb.imag() + scratch[9].imag() * ya.imag(),
scratch[10].real() * yb.imag() - scratch[9].real() * ya.imag());
*fout2 = scratch[11] + scratch[12];
*fout3 = scratch[11] - scratch[12];
++fout0;
++fout1;
++fout2;
++fout3;
++fout4;
}
}
// perform the butterfly for one stage of a mixed radix FFT
void kf_bfly_generic(complex_type* const fout, std::size_t const fstride, std::size_t const m, std::size_t const p) {
complex_type const* twiddles {&_twiddles[0]};
if (p > _scratchbuf.size()) {
_scratchbuf.resize(p);
}
for (std::size_t u = 0; u < m; ++u) {
std::size_t k {u};
for (std::size_t q1 = 0; q1 < p; ++q1) {
_scratchbuf[q1] = fout[k];
k += m;
}
k = u;
for(std::size_t q1 = 0; q1 < p; ++q1) {
std::size_t twidx {0};
fout[k] = _scratchbuf[0];
for (std::size_t q = 1; q < p; ++q) {
twidx += fstride * k;
if (twidx >= _nfft) {
twidx -= _nfft;
}
fout[k] += _scratchbuf[q] * twiddles[twidx];
}
k += m;
}
}
}
std::size_t _nfft {0};
std::vector<complex_type> _twiddles;
std::vector<std::size_t> _stage_radix;
std::vector<std::size_t> _stage_remainder;
std::vector<complex_type> _scratchbuf;
}; // class FFT_Basic
template<typename T>
using FFT = FFT_Basic<T, false>;
template<typename T>
using FFTI = FFT_Basic<T, true>;
} // namespace OB
#endif // OB_FFT_HH