pine

The pine programming language.


pine

/

src

/

format.h

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
/*
 Formatting library for C++

 Copyright (c) 2012 - 2016, Victor Zverovich
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice, this
    list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright notice,
    this list of conditions and the following disclaimer in the documentation
    and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef FMT_FORMAT_H_
#define FMT_FORMAT_H_

#define FMT_INCLUDE
#include <cassert>
#include <clocale>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <limits>
#include <memory>
#include <stdexcept>
#include <string>
#include <vector>
#include <utility>  // for std::pair
#undef FMT_INCLUDE

// The fmt library version in the form major * 10000 + minor * 100 + patch.
#define FMT_VERSION 40100

#if defined(__has_include)
# define FMT_HAS_INCLUDE(x) __has_include(x)
#else
# define FMT_HAS_INCLUDE(x) 0
#endif

#if (FMT_HAS_INCLUDE(<string_view>) && __cplusplus > 201402L) || \
    (defined(_MSVC_LANG) && _MSVC_LANG > 201402L && _MSC_VER >= 1910)
# include <string_view>
# define FMT_HAS_STRING_VIEW 1
#else
# define FMT_HAS_STRING_VIEW 0
#endif

#if defined _SECURE_SCL && _SECURE_SCL
# define FMT_SECURE_SCL _SECURE_SCL
#else
# define FMT_SECURE_SCL 0
#endif

#if FMT_SECURE_SCL
# include <iterator>
#endif

#ifdef _MSC_VER
# define FMT_MSC_VER _MSC_VER
#else
# define FMT_MSC_VER 0
#endif

#if FMT_MSC_VER && FMT_MSC_VER <= 1500
typedef unsigned __int32 uint32_t;
typedef unsigned __int64 uint64_t;
typedef __int64          intmax_t;
#else
#include <stdint.h>
#endif

#if !defined(FMT_HEADER_ONLY) && defined(_WIN32)
# ifdef FMT_EXPORT
#  define FMT_API __declspec(dllexport)
# elif defined(FMT_SHARED)
#  define FMT_API __declspec(dllimport)
# endif
#endif
#ifndef FMT_API
# define FMT_API
#endif

#ifdef __GNUC__
#pragma GCC system_header
# define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
# define FMT_GCC_EXTENSION __extension__
# if FMT_GCC_VERSION >= 406
#  pragma GCC diagnostic push
// Disable the warning about "long long" which is sometimes reported even
// when using __extension__.
#  pragma GCC diagnostic ignored "-Wlong-long"
// Disable the warning about declaration shadowing because it affects too
// many valid cases.
#  pragma GCC diagnostic ignored "-Wshadow"
// Disable the warning about implicit conversions that may change the sign of
// an integer; silencing it otherwise would require many explicit casts.
#  pragma GCC diagnostic ignored "-Wsign-conversion"
# endif
# if __cplusplus >= 201103L || defined __GXX_EXPERIMENTAL_CXX0X__
#  define FMT_HAS_GXX_CXX11 1
# endif
#else
# define FMT_GCC_VERSION 0
# define FMT_GCC_EXTENSION
# define FMT_HAS_GXX_CXX11 0
#endif

#if defined(__INTEL_COMPILER)
# define FMT_ICC_VERSION __INTEL_COMPILER
#elif defined(__ICL)
# define FMT_ICC_VERSION __ICL
#endif

#if defined(__clang__) && !defined(FMT_ICC_VERSION)
# define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__)
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wdocumentation-unknown-command"
# pragma clang diagnostic ignored "-Wpadded"
#endif

#ifdef __GNUC_LIBSTD__
# define FMT_GNUC_LIBSTD_VERSION (__GNUC_LIBSTD__ * 100 + __GNUC_LIBSTD_MINOR__)
#endif

#ifdef __has_feature
# define FMT_HAS_FEATURE(x) __has_feature(x)
#else
# define FMT_HAS_FEATURE(x) 0
#endif

#ifdef __has_builtin
# define FMT_HAS_BUILTIN(x) __has_builtin(x)
#else
# define FMT_HAS_BUILTIN(x) 0
#endif

#ifdef __has_cpp_attribute
# define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
#else
# define FMT_HAS_CPP_ATTRIBUTE(x) 0
#endif

#if FMT_HAS_CPP_ATTRIBUTE(maybe_unused)
# define FMT_HAS_CXX17_ATTRIBUTE_MAYBE_UNUSED
// VC++ 1910 support /std: option and that will set _MSVC_LANG macro
// Clang with Microsoft CodeGen doesn't define _MSVC_LANG macro
#elif defined(_MSVC_LANG) && _MSVC_LANG > 201402 && _MSC_VER >= 1910
# define FMT_HAS_CXX17_ATTRIBUTE_MAYBE_UNUSED
#endif

#ifdef FMT_HAS_CXX17_ATTRIBUTE_MAYBE_UNUSED
# define FMT_MAYBE_UNUSED [[maybe_unused]]
// g++/clang++ also support [[gnu::unused]]. However, we don't use it.
#elif defined(__GNUC__)
# define FMT_MAYBE_UNUSED __attribute__((unused))
#else
# define FMT_MAYBE_UNUSED
#endif

// Use the compiler's attribute noreturn
#if defined(__MINGW32__) || defined(__MINGW64__)
# define FMT_NORETURN __attribute__((noreturn))
#elif FMT_HAS_CPP_ATTRIBUTE(noreturn) && __cplusplus >= 201103L
# define FMT_NORETURN [[noreturn]]
#else
# define FMT_NORETURN
#endif

#ifndef FMT_USE_VARIADIC_TEMPLATES
// Variadic templates are available in GCC since version 4.4
// (http://gcc.gnu.org/projects/cxx0x.html) and in Visual C++
// since version 2013.
# define FMT_USE_VARIADIC_TEMPLATES \
   (FMT_HAS_FEATURE(cxx_variadic_templates) || \
       (FMT_GCC_VERSION >= 404 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1800)
#endif

#ifndef FMT_USE_RVALUE_REFERENCES
// Don't use rvalue references when compiling with clang and an old libstdc++
// as the latter doesn't provide std::move.
# if defined(FMT_GNUC_LIBSTD_VERSION) && FMT_GNUC_LIBSTD_VERSION <= 402
#  define FMT_USE_RVALUE_REFERENCES 0
# else
#  define FMT_USE_RVALUE_REFERENCES \
    (FMT_HAS_FEATURE(cxx_rvalue_references) || \
        (FMT_GCC_VERSION >= 403 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1600)
# endif
#endif

#if __cplusplus >= 201103L || FMT_MSC_VER >= 1700
# define FMT_USE_ALLOCATOR_TRAITS 1
#else
# define FMT_USE_ALLOCATOR_TRAITS 0
#endif

// Check if exceptions are disabled.
#if defined(__GNUC__) && !defined(__EXCEPTIONS)
# define FMT_EXCEPTIONS 0
#endif
#if FMT_MSC_VER && !_HAS_EXCEPTIONS
# define FMT_EXCEPTIONS 0
#endif
#ifndef FMT_EXCEPTIONS
# define FMT_EXCEPTIONS 1
#endif

#ifndef FMT_THROW
# if FMT_EXCEPTIONS
#  define FMT_THROW(x) throw x
# else
#  define FMT_THROW(x) assert(false)
# endif
#endif

// Define FMT_USE_NOEXCEPT to make fmt use noexcept (C++11 feature).
#ifndef FMT_USE_NOEXCEPT
# define FMT_USE_NOEXCEPT 0
#endif

#if FMT_USE_NOEXCEPT || FMT_HAS_FEATURE(cxx_noexcept) || \
    (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || \
    FMT_MSC_VER >= 1900
# define FMT_DETECTED_NOEXCEPT noexcept
#else
# define FMT_DETECTED_NOEXCEPT throw()
#endif

#ifndef FMT_NOEXCEPT
# if FMT_EXCEPTIONS
#  define FMT_NOEXCEPT FMT_DETECTED_NOEXCEPT
# else
#  define FMT_NOEXCEPT
# endif
#endif

// This is needed because GCC still uses throw() in its headers when exceptions
// are disabled.
#if FMT_GCC_VERSION
# define FMT_DTOR_NOEXCEPT FMT_DETECTED_NOEXCEPT
#else
# define FMT_DTOR_NOEXCEPT FMT_NOEXCEPT
#endif

#ifndef FMT_OVERRIDE
# if (defined(FMT_USE_OVERRIDE) && FMT_USE_OVERRIDE) || FMT_HAS_FEATURE(cxx_override) || \
   (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || \
   FMT_MSC_VER >= 1900
#  define FMT_OVERRIDE override
# else
#  define FMT_OVERRIDE
# endif
#endif

#ifndef FMT_NULL
# if FMT_HAS_FEATURE(cxx_nullptr) || \
   (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || \
   FMT_MSC_VER >= 1600
#  define FMT_NULL nullptr
# else
#  define FMT_NULL NULL
# endif
#endif

// A macro to disallow the copy constructor and operator= functions
// This should be used in the private: declarations for a class
#ifndef FMT_USE_DELETED_FUNCTIONS
# define FMT_USE_DELETED_FUNCTIONS 0
#endif

#if FMT_USE_DELETED_FUNCTIONS || FMT_HAS_FEATURE(cxx_deleted_functions) || \
  (FMT_GCC_VERSION >= 404 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1800
# define FMT_DELETED_OR_UNDEFINED  = delete
# define FMT_DISALLOW_COPY_AND_ASSIGN(TypeName) \
    TypeName(const TypeName&) = delete; \
    TypeName& operator=(const TypeName&) = delete
#else
# define FMT_DELETED_OR_UNDEFINED
# define FMT_DISALLOW_COPY_AND_ASSIGN(TypeName) \
    TypeName(const TypeName&); \
    TypeName& operator=(const TypeName&)
#endif

#ifndef FMT_USE_DEFAULTED_FUNCTIONS
# define FMT_USE_DEFAULTED_FUNCTIONS 0
#endif

#ifndef FMT_DEFAULTED_COPY_CTOR
# if FMT_USE_DEFAULTED_FUNCTIONS || FMT_HAS_FEATURE(cxx_defaulted_functions) || \
   (FMT_GCC_VERSION >= 404 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1800
#  define FMT_DEFAULTED_COPY_CTOR(TypeName) \
    TypeName(const TypeName&) = default;
# else
#  define FMT_DEFAULTED_COPY_CTOR(TypeName)
# endif
#endif

#ifndef FMT_USE_USER_DEFINED_LITERALS
// All compilers which support UDLs also support variadic templates. This
// makes the fmt::literals implementation easier. However, an explicit check
// for variadic templates is added here just in case.
// For Intel's compiler both it and the system gcc/msc must support UDLs.
# if FMT_USE_VARIADIC_TEMPLATES && FMT_USE_RVALUE_REFERENCES && \
   (FMT_HAS_FEATURE(cxx_user_literals) || \
     (FMT_GCC_VERSION >= 407 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900) && \
   (!defined(FMT_ICC_VERSION) || FMT_ICC_VERSION >= 1500)
#  define FMT_USE_USER_DEFINED_LITERALS 1
# else
#  define FMT_USE_USER_DEFINED_LITERALS 0
# endif
#endif

#ifndef FMT_USE_EXTERN_TEMPLATES
# define FMT_USE_EXTERN_TEMPLATES \
    (FMT_CLANG_VERSION >= 209 || (FMT_GCC_VERSION >= 303 && FMT_HAS_GXX_CXX11))
#endif

#ifdef FMT_HEADER_ONLY
// If header only do not use extern templates.
# undef FMT_USE_EXTERN_TEMPLATES
# define FMT_USE_EXTERN_TEMPLATES 0
#endif

#ifndef FMT_ASSERT
# define FMT_ASSERT(condition, message) assert((condition) && message)
#endif

// __builtin_clz is broken in clang with Microsoft CodeGen:
// https://github.com/fmtlib/fmt/issues/519
#ifndef _MSC_VER
# if FMT_GCC_VERSION >= 400 || FMT_HAS_BUILTIN(__builtin_clz)
#  define FMT_BUILTIN_CLZ(n) __builtin_clz(n)
# endif

# if FMT_GCC_VERSION >= 400 || FMT_HAS_BUILTIN(__builtin_clzll)
#  define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n)
# endif
#endif

// Some compilers masquerade as both MSVC and GCC-likes or
// otherwise support __builtin_clz and __builtin_clzll, so
// only define FMT_BUILTIN_CLZ using the MSVC intrinsics
// if the clz and clzll builtins are not available.
#if FMT_MSC_VER && !defined(FMT_BUILTIN_CLZLL) && !defined(_MANAGED)
# include <intrin.h>  // _BitScanReverse, _BitScanReverse64

namespace fmt {
namespace internal {
// avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning
# ifndef __clang__
#  pragma intrinsic(_BitScanReverse)
# endif
inline uint32_t clz(uint32_t x) {
  unsigned long r = 0;
  _BitScanReverse(&r, x);

  assert(x != 0);
  // Static analysis complains about using uninitialized data
  // "r", but the only way that can happen is if "x" is 0,
  // which the callers guarantee to not happen.
# pragma warning(suppress: 6102)
  return 31 - r;
}
# define FMT_BUILTIN_CLZ(n) fmt::internal::clz(n)

// avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning
# if defined(_WIN64) && !defined(__clang__)
#  pragma intrinsic(_BitScanReverse64)
# endif

inline uint32_t clzll(uint64_t x) {
  unsigned long r = 0;
# ifdef _WIN64
  _BitScanReverse64(&r, x);
# else
  // Scan the high 32 bits.
  if (_BitScanReverse(&r, static_cast<uint32_t>(x >> 32)))
    return 63 - (r + 32);

  // Scan the low 32 bits.
  _BitScanReverse(&r, static_cast<uint32_t>(x));
# endif

  assert(x != 0);
  // Static analysis complains about using uninitialized data
  // "r", but the only way that can happen is if "x" is 0,
  // which the callers guarantee to not happen.
# pragma warning(suppress: 6102)
  return 63 - r;
}
# define FMT_BUILTIN_CLZLL(n) fmt::internal::clzll(n)
}
}
#endif

namespace fmt {
namespace internal {
struct DummyInt {
  int data[2];
  operator int() const { return 0; }
};
typedef std::numeric_limits<fmt::internal::DummyInt> FPUtil;

// Dummy implementations of system functions such as signbit and ecvt called
// if the latter are not available.
inline DummyInt signbit(...) { return DummyInt(); }
inline DummyInt _ecvt_s(...) { return DummyInt(); }
inline DummyInt isinf(...) { return DummyInt(); }
inline DummyInt _finite(...) { return DummyInt(); }
inline DummyInt isnan(...) { return DummyInt(); }
inline DummyInt _isnan(...) { return DummyInt(); }

// A helper function to suppress bogus "conditional expression is constant"
// warnings.
template <typename T>
inline T const_check(T value) { return value; }
}
}  // namespace fmt

namespace std {
// Standard permits specialization of std::numeric_limits. This specialization
// is used to resolve ambiguity between isinf and std::isinf in glibc:
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=48891
// and the same for isnan and signbit.
template <>
class numeric_limits<fmt::internal::DummyInt> :
    public std::numeric_limits<int> {
 public:
  // Portable version of isinf.
  template <typename T>
  static bool isinfinity(T x) {
    using namespace fmt::internal;
    // The resolution "priority" is:
    // isinf macro > std::isinf > ::isinf > fmt::internal::isinf
    if (const_check(sizeof(isinf(x)) == sizeof(bool) ||
                    sizeof(isinf(x)) == sizeof(int))) {
      return isinf(x) != 0;
    }
    return !_finite(static_cast<double>(x));
  }

  // Portable version of isnan.
  template <typename T>
  static bool isnotanumber(T x) {
    using namespace fmt::internal;
    if (const_check(sizeof(isnan(x)) == sizeof(bool) ||
                    sizeof(isnan(x)) == sizeof(int))) {
      return isnan(x) != 0;
    }
    return _isnan(static_cast<double>(x)) != 0;
  }

  // Portable version of signbit.
  static bool isnegative(double x) {
    using namespace fmt::internal;
    if (const_check(sizeof(signbit(x)) == sizeof(bool) ||
                    sizeof(signbit(x)) == sizeof(int))) {
      return signbit(x) != 0;
    }
    if (x < 0) return true;
    if (!isnotanumber(x)) return false;
    int dec = 0, sign = 0;
    char buffer[2];  // The buffer size must be >= 2 or _ecvt_s will fail.
    _ecvt_s(buffer, sizeof(buffer), x, 0, &dec, &sign);
    return sign != 0;
  }
};
}  // namespace std

namespace fmt {

// Fix the warning about long long on older versions of GCC
// that don't support the diagnostic pragma.
FMT_GCC_EXTENSION typedef long long LongLong;
FMT_GCC_EXTENSION typedef unsigned long long ULongLong;

#if FMT_USE_RVALUE_REFERENCES
using std::move;
#endif

template <typename Char>
class BasicWriter;

typedef BasicWriter<char> Writer;
typedef BasicWriter<wchar_t> WWriter;

template <typename Char>
class ArgFormatter;

struct FormatSpec;

template <typename Impl, typename Char, typename Spec = fmt::FormatSpec>
class BasicPrintfArgFormatter;

template <typename CharType,
          typename ArgFormatter = fmt::ArgFormatter<CharType> >
class BasicFormatter;

/**
  \rst
  A string reference. It can be constructed from a C string or
  ``std::basic_string``.

  You can use one of the following typedefs for common character types:

  +------------+-------------------------+
  | Type       | Definition              |
  +============+=========================+
  | StringRef  | BasicStringRef<char>    |
  +------------+-------------------------+
  | WStringRef | BasicStringRef<wchar_t> |
  +------------+-------------------------+

  This class is most useful as a parameter type to allow passing
  different types of strings to a function, for example::

    template <typename... Args>
    std::string format(StringRef format_str, const Args & ... args);

    format("{}", 42);
    format(std::string("{}"), 42);
  \endrst
 */
template <typename Char>
class BasicStringRef {
 private:
  const Char *data_;
  std::size_t size_;

 public:
  /** Constructs a string reference object from a C string and a size. */
  BasicStringRef(const Char *s, std::size_t size) : data_(s), size_(size) {}

  /**
    \rst
    Constructs a string reference object from a C string computing
    the size with ``std::char_traits<Char>::length``.
    \endrst
   */
  BasicStringRef(const Char *s)
    : data_(s), size_(std::char_traits<Char>::length(s)) {}

  /**
    \rst
    Constructs a string reference from a ``std::basic_string`` object.
    \endrst
   */
  template <typename Allocator>
  BasicStringRef(
      const std::basic_string<Char, std::char_traits<Char>, Allocator> &s)
  : data_(s.c_str()), size_(s.size()) {}

#if FMT_HAS_STRING_VIEW
  /**
    \rst
    Constructs a string reference from a ``std::basic_string_view`` object.
    \endrst
   */
  BasicStringRef(
      const std::basic_string_view<Char, std::char_traits<Char>> &s)
  : data_(s.data()), size_(s.size()) {}

  /**
   \rst
   Converts a string reference to an ``std::string_view`` object.
   \endrst
  */
  explicit operator std::basic_string_view<Char>() const FMT_NOEXCEPT {
    return std::basic_string_view<Char>(data_, size_);
  }
#endif

  /**
    \rst
    Converts a string reference to an ``std::string`` object.
    \endrst
   */
  std::basic_string<Char> to_string() const {
    return std::basic_string<Char>(data_, size_);
  }

  /** Returns a pointer to the string data. */
  const Char *data() const { return data_; }

  /** Returns the string size. */
  std::size_t size() const { return size_; }

  // Lexicographically compare this string reference to other.
  int compare(BasicStringRef other) const {
    std::size_t size = size_ < other.size_ ? size_ : other.size_;
    int result = std::char_traits<Char>::compare(data_, other.data_, size);
    if (result == 0)
      result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1);
    return result;
  }

  friend bool operator==(BasicStringRef lhs, BasicStringRef rhs) {
    return lhs.compare(rhs) == 0;
  }
  friend bool operator!=(BasicStringRef lhs, BasicStringRef rhs) {
    return lhs.compare(rhs) != 0;
  }
  friend bool operator<(BasicStringRef lhs, BasicStringRef rhs) {
    return lhs.compare(rhs) < 0;
  }
  friend bool operator<=(BasicStringRef lhs, BasicStringRef rhs) {
    return lhs.compare(rhs) <= 0;
  }
  friend bool operator>(BasicStringRef lhs, BasicStringRef rhs) {
    return lhs.compare(rhs) > 0;
  }
  friend bool operator>=(BasicStringRef lhs, BasicStringRef rhs) {
    return lhs.compare(rhs) >= 0;
  }
};

typedef BasicStringRef<char> StringRef;
typedef BasicStringRef<wchar_t> WStringRef;

/**
  \rst
  A reference to a null terminated string. It can be constructed from a C
  string or ``std::basic_string``.

  You can use one of the following typedefs for common character types:

  +-------------+--------------------------+
  | Type        | Definition               |
  +=============+==========================+
  | CStringRef  | BasicCStringRef<char>    |
  +-------------+--------------------------+
  | WCStringRef | BasicCStringRef<wchar_t> |
  +-------------+--------------------------+

  This class is most useful as a parameter type to allow passing
  different types of strings to a function, for example::

    template <typename... Args>
    std::string format(CStringRef format_str, const Args & ... args);

    format("{}", 42);
    format(std::string("{}"), 42);
  \endrst
 */
template <typename Char>
class BasicCStringRef {
 private:
  const Char *data_;

 public:
  /** Constructs a string reference object from a C string. */
  BasicCStringRef(const Char *s) : data_(s) {}

  /**
    \rst
    Constructs a string reference from a ``std::basic_string`` object.
    \endrst
   */
  template <typename Allocator>
  BasicCStringRef(
      const std::basic_string<Char, std::char_traits<Char>, Allocator> &s)
  : data_(s.c_str()) {}

  /** Returns the pointer to a C string. */
  const Char *c_str() const { return data_; }
};

typedef BasicCStringRef<char> CStringRef;
typedef BasicCStringRef<wchar_t> WCStringRef;

/** A formatting error such as invalid format string. */
class FormatError : public std::runtime_error {
 public:
  explicit FormatError(CStringRef message)
  : std::runtime_error(message.c_str()) {}
  FormatError(const FormatError &ferr) : std::runtime_error(ferr) {}
  FMT_API ~FormatError() FMT_DTOR_NOEXCEPT FMT_OVERRIDE;
};

namespace internal {

// MakeUnsigned<T>::Type gives an unsigned type corresponding to integer type T.
template <typename T>
struct MakeUnsigned { typedef T Type; };

#define FMT_SPECIALIZE_MAKE_UNSIGNED(T, U) \
  template <> \
  struct MakeUnsigned<T> { typedef U Type; }

FMT_SPECIALIZE_MAKE_UNSIGNED(char, unsigned char);
FMT_SPECIALIZE_MAKE_UNSIGNED(signed char, unsigned char);
FMT_SPECIALIZE_MAKE_UNSIGNED(short, unsigned short);
FMT_SPECIALIZE_MAKE_UNSIGNED(int, unsigned);
FMT_SPECIALIZE_MAKE_UNSIGNED(long, unsigned long);
FMT_SPECIALIZE_MAKE_UNSIGNED(LongLong, ULongLong);

// Casts nonnegative integer to unsigned.
template <typename Int>
inline typename MakeUnsigned<Int>::Type to_unsigned(Int value) {
  FMT_ASSERT(value >= 0, "negative value");
  return static_cast<typename MakeUnsigned<Int>::Type>(value);
}

// The number of characters to store in the MemoryBuffer object itself
// to avoid dynamic memory allocation.
enum { INLINE_BUFFER_SIZE = 500 };

#if FMT_SECURE_SCL
// Use checked iterator to avoid warnings on MSVC.
template <typename T>
inline stdext::checked_array_iterator<T*> make_ptr(T *ptr, std::size_t size) {
  return stdext::checked_array_iterator<T*>(ptr, size);
}
#else
template <typename T>
inline T *make_ptr(T *ptr, std::size_t) { return ptr; }
#endif
}  // namespace internal

/**
  \rst
  A buffer supporting a subset of ``std::vector``'s operations.
  \endrst
 */
template <typename T>
class Buffer {
 private:
  FMT_DISALLOW_COPY_AND_ASSIGN(Buffer);

 protected:
  T *ptr_;
  std::size_t size_;
  std::size_t capacity_;

  Buffer(T *ptr = FMT_NULL, std::size_t capacity = 0)
    : ptr_(ptr), size_(0), capacity_(capacity) {}

  /**
    \rst
    Increases the buffer capacity to hold at least *size* elements updating
    ``ptr_`` and ``capacity_``.
    \endrst
   */
  virtual void grow(std::size_t size) = 0;

 public:
  virtual ~Buffer() {}

  /** Returns the size of this buffer. */
  std::size_t size() const { return size_; }

  /** Returns the capacity of this buffer. */
  std::size_t capacity() const { return capacity_; }

  /**
    Resizes the buffer. If T is a POD type new elements may not be initialized.
   */
  void resize(std::size_t new_size) {
    if (new_size > capacity_)
      grow(new_size);
    size_ = new_size;
  }

  /**
    \rst
    Reserves space to store at least *capacity* elements.
    \endrst
   */
  void reserve(std::size_t capacity) {
    if (capacity > capacity_)
      grow(capacity);
  }

  void clear() FMT_NOEXCEPT { size_ = 0; }

  void push_back(const T &value) {
    if (size_ == capacity_)
      grow(size_ + 1);
    ptr_[size_++] = value;
  }

  /** Appends data to the end of the buffer. */
  template <typename U>
  void append(const U *begin, const U *end);

  T &operator[](std::size_t index) { return ptr_[index]; }
  const T &operator[](std::size_t index) const { return ptr_[index]; }
};

template <typename T>
template <typename U>
void Buffer<T>::append(const U *begin, const U *end) {
  FMT_ASSERT(end >= begin, "negative value");
  std::size_t new_size = size_ + static_cast<std::size_t>(end - begin);
  if (new_size > capacity_)
    grow(new_size);
  std::uninitialized_copy(begin, end,
                          internal::make_ptr(ptr_, capacity_) + size_);
  size_ = new_size;
}

namespace internal {

// A memory buffer for trivially copyable/constructible types with the first
// SIZE elements stored in the object itself.
template <typename T, std::size_t SIZE, typename Allocator = std::allocator<T> >
class MemoryBuffer : private Allocator, public Buffer<T> {
 private:
  T data_[SIZE];

  // Deallocate memory allocated by the buffer.
  void deallocate() {
    if (this->ptr_ != data_) Allocator::deallocate(this->ptr_, this->capacity_);
  }

 protected:
  void grow(std::size_t size) FMT_OVERRIDE;

 public:
  explicit MemoryBuffer(const Allocator &alloc = Allocator())
      : Allocator(alloc), Buffer<T>(data_, SIZE) {}
  ~MemoryBuffer() FMT_OVERRIDE { deallocate(); }

#if FMT_USE_RVALUE_REFERENCES
 private:
  // Move data from other to this buffer.
  void move(MemoryBuffer &other) {
    Allocator &this_alloc = *this, &other_alloc = other;
    this_alloc = std::move(other_alloc);
    this->size_ = other.size_;
    this->capacity_ = other.capacity_;
    if (other.ptr_ == other.data_) {
      this->ptr_ = data_;
      std::uninitialized_copy(other.data_, other.data_ + this->size_,
                              make_ptr(data_, this->capacity_));
    } else {
      this->ptr_ = other.ptr_;
      // Set pointer to the inline array so that delete is not called
      // when deallocating.
      other.ptr_ = other.data_;
    }
  }

 public:
  MemoryBuffer(MemoryBuffer &&other) {
    move(other);
  }

  MemoryBuffer &operator=(MemoryBuffer &&other) {
    assert(this != &other);
    deallocate();
    move(other);
    return *this;
  }
#endif

  // Returns a copy of the allocator associated with this buffer.
  Allocator get_allocator() const { return *this; }
};

template <typename T, std::size_t SIZE, typename Allocator>
void MemoryBuffer<T, SIZE, Allocator>::grow(std::size_t size) {
  std::size_t new_capacity = this->capacity_ + this->capacity_ / 2;
  if (size > new_capacity)
      new_capacity = size;
#if FMT_USE_ALLOCATOR_TRAITS
  T *new_ptr =
      std::allocator_traits<Allocator>::allocate(*this, new_capacity, FMT_NULL);
#else
  T *new_ptr = this->allocate(new_capacity, FMT_NULL);
#endif
  // The following code doesn't throw, so the raw pointer above doesn't leak.
  std::uninitialized_copy(this->ptr_, this->ptr_ + this->size_,
                          make_ptr(new_ptr, new_capacity));
  std::size_t old_capacity = this->capacity_;
  T *old_ptr = this->ptr_;
  this->capacity_ = new_capacity;
  this->ptr_ = new_ptr;
  // deallocate may throw (at least in principle), but it doesn't matter since
  // the buffer already uses the new storage and will deallocate it in case
  // of exception.
  if (old_ptr != data_)
    Allocator::deallocate(old_ptr, old_capacity);
}

// A fixed-size buffer.
template <typename Char>
class FixedBuffer : public fmt::Buffer<Char> {
 public:
  FixedBuffer(Char *array, std::size_t size) : fmt::Buffer<Char>(array, size) {}

 protected:
  FMT_API void grow(std::size_t size) FMT_OVERRIDE;
};

template <typename Char>
class BasicCharTraits {
 public:
#if FMT_SECURE_SCL
  typedef stdext::checked_array_iterator<Char*> CharPtr;
#else
  typedef Char *CharPtr;
#endif
  static Char cast(int value) { return static_cast<Char>(value); }
};

template <typename Char>
class CharTraits;

template <>
class CharTraits<char> : public BasicCharTraits<char> {
 private:
  // Conversion from wchar_t to char is not allowed.
  static char convert(wchar_t);

 public:
  static char convert(char value) { return value; }

  // Formats a floating-point number.
  template <typename T>
  FMT_API static int format_float(char *buffer, std::size_t size,
      const char *format, unsigned width, int precision, T value);
};

#if FMT_USE_EXTERN_TEMPLATES
extern template int CharTraits<char>::format_float<double>
        (char *buffer, std::size_t size,
         const char* format, unsigned width, int precision, double value);
extern template int CharTraits<char>::format_float<long double>
        (char *buffer, std::size_t size,
         const char* format, unsigned width, int precision, long double value);
#endif

template <>
class CharTraits<wchar_t> : public BasicCharTraits<wchar_t> {
 public:
  static wchar_t convert(char value) { return value; }
  static wchar_t convert(wchar_t value) { return value; }

  template <typename T>
  FMT_API static int format_float(wchar_t *buffer, std::size_t size,
      const wchar_t *format, unsigned width, int precision, T value);
};

#if FMT_USE_EXTERN_TEMPLATES
extern template int CharTraits<wchar_t>::format_float<double>
        (wchar_t *buffer, std::size_t size,
         const wchar_t* format, unsigned width, int precision, double value);
extern template int CharTraits<wchar_t>::format_float<long double>
        (wchar_t *buffer, std::size_t size,
         const wchar_t* format, unsigned width, int precision, long double value);
#endif

// Checks if a number is negative - used to avoid warnings.
template <bool IsSigned>
struct SignChecker {
  template <typename T>
  static bool is_negative(T value) { return value < 0; }
};

template <>
struct SignChecker<false> {
  template <typename T>
  static bool is_negative(T) { return false; }
};

// Returns true if value is negative, false otherwise.
// Same as (value < 0) but doesn't produce warnings if T is an unsigned type.
template <typename T>
inline bool is_negative(T value) {
  return SignChecker<std::numeric_limits<T>::is_signed>::is_negative(value);
}

// Selects uint32_t if FitsIn32Bits is true, uint64_t otherwise.
template <bool FitsIn32Bits>
struct TypeSelector { typedef uint32_t Type; };

template <>
struct TypeSelector<false> { typedef uint64_t Type; };

template <typename T>
struct IntTraits {
  // Smallest of uint32_t and uint64_t that is large enough to represent
  // all values of T.
  typedef typename
    TypeSelector<std::numeric_limits<T>::digits <= 32>::Type MainType;
};

FMT_API FMT_NORETURN void report_unknown_type(char code, const char *type);

// Static data is placed in this class template to allow header-only
// configuration.
template <typename T = void>
struct FMT_API BasicData {
  static const uint32_t POWERS_OF_10_32[];
  static const uint64_t POWERS_OF_10_64[];
  static const char DIGITS[];
};

#if FMT_USE_EXTERN_TEMPLATES
extern template struct BasicData<void>;
#endif

typedef BasicData<> Data;

#ifdef FMT_BUILTIN_CLZLL
// Returns the number of decimal digits in n. Leading zeros are not counted
// except for n == 0 in which case count_digits returns 1.
inline unsigned count_digits(uint64_t n) {
  // Based on http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
  // and the benchmark https://github.com/localvoid/cxx-benchmark-count-digits.
  int t = (64 - FMT_BUILTIN_CLZLL(n | 1)) * 1233 >> 12;
  return to_unsigned(t) - (n < Data::POWERS_OF_10_64[t]) + 1;
}
#else
// Fallback version of count_digits used when __builtin_clz is not available.
inline unsigned count_digits(uint64_t n) {
  unsigned count = 1;
  for (;;) {
    // Integer division is slow so do it for a group of four digits instead
    // of for every digit. The idea comes from the talk by Alexandrescu
    // "Three Optimization Tips for C++". See speed-test for a comparison.
    if (n < 10) return count;
    if (n < 100) return count + 1;
    if (n < 1000) return count + 2;
    if (n < 10000) return count + 3;
    n /= 10000u;
    count += 4;
  }
}
#endif

#ifdef FMT_BUILTIN_CLZ
// Optional version of count_digits for better performance on 32-bit platforms.
inline unsigned count_digits(uint32_t n) {
  int t = (32 - FMT_BUILTIN_CLZ(n | 1)) * 1233 >> 12;
  return to_unsigned(t) - (n < Data::POWERS_OF_10_32[t]) + 1;
}
#endif

// A functor that doesn't add a thousands separator.
struct NoThousandsSep {
  template <typename Char>
  void operator()(Char *) {}
};

// A functor that adds a thousands separator.
class ThousandsSep {
 private:
  fmt::StringRef sep_;

  // Index of a decimal digit with the least significant digit having index 0.
  unsigned digit_index_;

 public:
  explicit ThousandsSep(fmt::StringRef sep) : sep_(sep), digit_index_(0) {}

  template <typename Char>
  void operator()(Char *&buffer) {
    if (++digit_index_ % 3 != 0)
      return;
    buffer -= sep_.size();
    std::uninitialized_copy(sep_.data(), sep_.data() + sep_.size(),
                            internal::make_ptr(buffer, sep_.size()));
  }
};

// Formats a decimal unsigned integer value writing into buffer.
// thousands_sep is a functor that is called after writing each char to
// add a thousands separator if necessary.
template <typename UInt, typename Char, typename ThousandsSep>
inline void format_decimal(Char *buffer, UInt value, unsigned num_digits,
                           ThousandsSep thousands_sep) {
  buffer += num_digits;
  while (value >= 100) {
    // Integer division is slow so do it for a group of two digits instead
    // of for every digit. The idea comes from the talk by Alexandrescu
    // "Three Optimization Tips for C++". See speed-test for a comparison.
    unsigned index = static_cast<unsigned>((value % 100) * 2);
    value /= 100;
    *--buffer = Data::DIGITS[index + 1];
    thousands_sep(buffer);
    *--buffer = Data::DIGITS[index];
    thousands_sep(buffer);
  }
  if (value < 10) {
    *--buffer = static_cast<char>('0' + value);
    return;
  }
  unsigned index = static_cast<unsigned>(value * 2);
  *--buffer = Data::DIGITS[index + 1];
  thousands_sep(buffer);
  *--buffer = Data::DIGITS[index];
}

template <typename UInt, typename Char>
inline void format_decimal(Char *buffer, UInt value, unsigned num_digits) {
  format_decimal(buffer, value, num_digits, NoThousandsSep());
  return;
}

#ifndef _WIN32
# define FMT_USE_WINDOWS_H 0
#elif !defined(FMT_USE_WINDOWS_H)
# define FMT_USE_WINDOWS_H 1
#endif

// Define FMT_USE_WINDOWS_H to 0 to disable use of windows.h.
// All the functionality that relies on it will be disabled too.
#if FMT_USE_WINDOWS_H
// A converter from UTF-8 to UTF-16.
// It is only provided for Windows since other systems support UTF-8 natively.
class UTF8ToUTF16 {
 private:
  MemoryBuffer<wchar_t, INLINE_BUFFER_SIZE> buffer_;

 public:
  FMT_API explicit UTF8ToUTF16(StringRef s);
  operator WStringRef() const { return WStringRef(&buffer_[0], size()); }
  size_t size() const { return buffer_.size() - 1; }
  const wchar_t *c_str() const { return &buffer_[0]; }
  std::wstring str() const { return std::wstring(&buffer_[0], size()); }
};

// A converter from UTF-16 to UTF-8.
// It is only provided for Windows since other systems support UTF-8 natively.
class UTF16ToUTF8 {
 private:
  MemoryBuffer<char, INLINE_BUFFER_SIZE> buffer_;

 public:
  UTF16ToUTF8() {}
  FMT_API explicit UTF16ToUTF8(WStringRef s);
  operator StringRef() const { return StringRef(&buffer_[0], size()); }
  size_t size() const { return buffer_.size() - 1; }
  const char *c_str() const { return &buffer_[0]; }
  std::string str() const { return std::string(&buffer_[0], size()); }

  // Performs conversion returning a system error code instead of
  // throwing exception on conversion error. This method may still throw
  // in case of memory allocation error.
  FMT_API int convert(WStringRef s);
};

FMT_API void format_windows_error(fmt::Writer &out, int error_code,
                                  fmt::StringRef message) FMT_NOEXCEPT;
#endif

// A formatting argument value.
struct Value {
  template <typename Char>
  struct StringValue {
    const Char *value;
    std::size_t size;
  };

  typedef void (*FormatFunc)(
      void *formatter, const void *arg, void *format_str_ptr);

  struct CustomValue {
    const void *value;
    FormatFunc format;
  };

  union {
    int int_value;
    unsigned uint_value;
    LongLong long_long_value;
    ULongLong ulong_long_value;
    double double_value;
    long double long_double_value;
    const void *pointer;
    StringValue<char> string;
    StringValue<signed char> sstring;
    StringValue<unsigned char> ustring;
    StringValue<wchar_t> wstring;
    CustomValue custom;
  };

  enum Type {
    NONE, NAMED_ARG,
    // Integer types should go first,
    INT, UINT, LONG_LONG, ULONG_LONG, BOOL, CHAR, LAST_INTEGER_TYPE = CHAR,
    // followed by floating-point types.
    DOUBLE, LONG_DOUBLE, LAST_NUMERIC_TYPE = LONG_DOUBLE,
    CSTRING, STRING, WSTRING, POINTER, CUSTOM
  };
};

// A formatting argument. It is a trivially copyable/constructible type to
// allow storage in internal::MemoryBuffer.
struct Arg : Value {
  Type type;
};

template <typename Char>
struct NamedArg;
template <typename Char, typename T>
struct NamedArgWithType;

template <typename T = void>
struct Null {};

// A helper class template to enable or disable overloads taking wide
// characters and strings in MakeValue.
template <typename T, typename Char>
struct WCharHelper {
  typedef Null<T> Supported;
  typedef T Unsupported;
};

template <typename T>
struct WCharHelper<T, wchar_t> {
  typedef T Supported;
  typedef Null<T> Unsupported;
};

typedef char Yes[1];
typedef char No[2];

template <typename T>
T &get();

// These are non-members to workaround an overload resolution bug in bcc32.
Yes &convert(fmt::ULongLong);
No &convert(...);

template <typename T, bool ENABLE_CONVERSION>
struct ConvertToIntImpl {
  enum { value = ENABLE_CONVERSION };
};

template <typename T, bool ENABLE_CONVERSION>
struct ConvertToIntImpl2 {
  enum { value = false };
};

template <typename T>
struct ConvertToIntImpl2<T, true> {
  enum {
    // Don't convert numeric types.
    value = ConvertToIntImpl<T, !std::numeric_limits<T>::is_specialized>::value
  };
};

template <typename T>
struct ConvertToInt {
  enum {
    enable_conversion = sizeof(fmt::internal::convert(get<T>())) == sizeof(Yes)
  };
  enum { value = ConvertToIntImpl2<T, enable_conversion>::value };
};

#define FMT_DISABLE_CONVERSION_TO_INT(Type) \
  template <> \
  struct ConvertToInt<Type> {  enum { value = 0 }; }

// Silence warnings about convering float to int.
FMT_DISABLE_CONVERSION_TO_INT(float);
FMT_DISABLE_CONVERSION_TO_INT(double);
FMT_DISABLE_CONVERSION_TO_INT(long double);

template <bool B, class T = void>
struct EnableIf {};

template <class T>
struct EnableIf<true, T> { typedef T type; };

template <bool B, class T, class F>
struct Conditional { typedef T type; };

template <class T, class F>
struct Conditional<false, T, F> { typedef F type; };

// For bcc32 which doesn't understand ! in template arguments.
template <bool>
struct Not { enum { value = 0 }; };

template <>
struct Not<false> { enum { value = 1 }; };

template <typename T>
struct FalseType { enum { value = 0 }; };

template <typename T, T> struct LConvCheck {
  LConvCheck(int) {}
};

// Returns the thousands separator for the current locale.
// We check if ``lconv`` contains ``thousands_sep`` because on Android
// ``lconv`` is stubbed as an empty struct.
template <typename LConv>
inline StringRef thousands_sep(
    LConv *lc, LConvCheck<char *LConv::*, &LConv::thousands_sep> = 0) {
  return lc->thousands_sep;
}

inline fmt::StringRef thousands_sep(...) { return ""; }

#define FMT_CONCAT(a, b) a##b

#if FMT_GCC_VERSION >= 303
# define FMT_UNUSED __attribute__((unused))
#else
# define FMT_UNUSED
#endif

#ifndef FMT_USE_STATIC_ASSERT
# define FMT_USE_STATIC_ASSERT 0
#endif

#if FMT_USE_STATIC_ASSERT || FMT_HAS_FEATURE(cxx_static_assert) || \
  (FMT_GCC_VERSION >= 403 && FMT_HAS_GXX_CXX11) || _MSC_VER >= 1600
# define FMT_STATIC_ASSERT(cond, message) static_assert(cond, message)
#else
# define FMT_CONCAT_(a, b) FMT_CONCAT(a, b)
# define FMT_STATIC_ASSERT(cond, message) \
  typedef int FMT_CONCAT_(Assert, __LINE__)[(cond) ? 1 : -1] FMT_UNUSED
#endif

template <typename Formatter>
void format_arg(Formatter&, ...) {
  FMT_STATIC_ASSERT(FalseType<Formatter>::value,
                    "Cannot format argument. To enable the use of ostream "
                    "operator<< include fmt/ostream.h. Otherwise provide "
                    "an overload of format_arg.");
}

// Makes an Arg object from any type.
template <typename Formatter>
class MakeValue : public Arg {
 public:
  typedef typename Formatter::Char Char;

 private:
  // The following two methods are private to disallow formatting of
  // arbitrary pointers. If you want to output a pointer cast it to
  // "void *" or "const void *". In particular, this forbids formatting
  // of "[const] volatile char *" which is printed as bool by iostreams.
  // Do not implement!
  template <typename T>
  MakeValue(const T *value);
  template <typename T>
  MakeValue(T *value);

  // The following methods are private to disallow formatting of wide
  // characters and strings into narrow strings as in
  //   fmt::format("{}", L"test");
  // To fix this, use a wide format string: fmt::format(L"{}", L"test").
#if !FMT_MSC_VER || defined(_NATIVE_WCHAR_T_DEFINED)
  MakeValue(typename WCharHelper<wchar_t, Char>::Unsupported);
#endif
  MakeValue(typename WCharHelper<wchar_t *, Char>::Unsupported);
  MakeValue(typename WCharHelper<const wchar_t *, Char>::Unsupported);
  MakeValue(typename WCharHelper<const std::wstring &, Char>::Unsupported);
#if FMT_HAS_STRING_VIEW
  MakeValue(typename WCharHelper<const std::wstring_view &, Char>::Unsupported);
#endif
  MakeValue(typename WCharHelper<WStringRef, Char>::Unsupported);

  void set_string(StringRef str) {
    string.value = str.data();
    string.size = str.size();
  }

  void set_string(WStringRef str) {
    wstring.value = str.data();
    wstring.size = str.size();
  }

  // Formats an argument of a custom type, such as a user-defined class.
  template <typename T>
  static void format_custom_arg(
      void *formatter, const void *arg, void *format_str_ptr) {
    format_arg(*static_cast<Formatter*>(formatter),
               *static_cast<const Char**>(format_str_ptr),
               *static_cast<const T*>(arg));
  }

 public:
  MakeValue() {}

#define FMT_MAKE_VALUE_(Type, field, TYPE, rhs) \
  MakeValue(Type value) { field = rhs; } \
  static uint64_t type(Type) { return Arg::TYPE; }

#define FMT_MAKE_VALUE(Type, field, TYPE) \
  FMT_MAKE_VALUE_(Type, field, TYPE, value)

  FMT_MAKE_VALUE(bool, int_value, BOOL)
  FMT_MAKE_VALUE(short, int_value, INT)
  FMT_MAKE_VALUE(unsigned short, uint_value, UINT)
  FMT_MAKE_VALUE(int, int_value, INT)
  FMT_MAKE_VALUE(unsigned, uint_value, UINT)

  MakeValue(long value) {
    // To minimize the number of types we need to deal with, long is
    // translated either to int or to long long depending on its size.
    if (const_check(sizeof(long) == sizeof(int)))
      int_value = static_cast<int>(value);
    else
      long_long_value = value;
  }
  static uint64_t type(long) {
    return sizeof(long) == sizeof(int) ? Arg::INT : Arg::LONG_LONG;
  }

  MakeValue(unsigned long value) {
    if (const_check(sizeof(unsigned long) == sizeof(unsigned)))
      uint_value = static_cast<unsigned>(value);
    else
      ulong_long_value = value;
  }
  static uint64_t type(unsigned long) {
    return sizeof(unsigned long) == sizeof(unsigned) ?
          Arg::UINT : Arg::ULONG_LONG;
  }

  FMT_MAKE_VALUE(LongLong, long_long_value, LONG_LONG)
  FMT_MAKE_VALUE(ULongLong, ulong_long_value, ULONG_LONG)
  FMT_MAKE_VALUE(float, double_value, DOUBLE)
  FMT_MAKE_VALUE(double, double_value, DOUBLE)
  FMT_MAKE_VALUE(long double, long_double_value, LONG_DOUBLE)
  FMT_MAKE_VALUE(signed char, int_value, INT)
  FMT_MAKE_VALUE(unsigned char, uint_value, UINT)
  FMT_MAKE_VALUE(char, int_value, CHAR)

#if __cplusplus >= 201103L
  template <
    typename T,
    typename = typename std::enable_if<
      std::is_enum<T>::value && ConvertToInt<T>::value>::type>
   MakeValue(T value) { int_value = value; }

  template <
    typename T,
    typename = typename std::enable_if<
      std::is_enum<T>::value && ConvertToInt<T>::value>::type>
  static uint64_t type(T) { return Arg::INT; }
#endif

#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
  MakeValue(typename WCharHelper<wchar_t, Char>::Supported value) {
    int_value = value;
  }
  static uint64_t type(wchar_t) { return Arg::CHAR; }
#endif

#define FMT_MAKE_STR_VALUE(Type, TYPE) \
  MakeValue(Type value) { set_string(value); } \
  static uint64_t type(Type) { return Arg::TYPE; }

  FMT_MAKE_VALUE(char *, string.value, CSTRING)
  FMT_MAKE_VALUE(const char *, string.value, CSTRING)
  FMT_MAKE_VALUE(signed char *, sstring.value, CSTRING)
  FMT_MAKE_VALUE(const signed char *, sstring.value, CSTRING)
  FMT_MAKE_VALUE(unsigned char *, ustring.value, CSTRING)
  FMT_MAKE_VALUE(const unsigned char *, ustring.value, CSTRING)
  FMT_MAKE_STR_VALUE(const std::string &, STRING)
#if FMT_HAS_STRING_VIEW
  FMT_MAKE_STR_VALUE(const std::string_view &, STRING)
#endif
  FMT_MAKE_STR_VALUE(StringRef, STRING)
  FMT_MAKE_VALUE_(CStringRef, string.value, CSTRING, value.c_str())

#define FMT_MAKE_WSTR_VALUE(Type, TYPE) \
  MakeValue(typename WCharHelper<Type, Char>::Supported value) { \
    set_string(value); \
  } \
  static uint64_t type(Type) { return Arg::TYPE; }

  FMT_MAKE_WSTR_VALUE(wchar_t *, WSTRING)
  FMT_MAKE_WSTR_VALUE(const wchar_t *, WSTRING)
  FMT_MAKE_WSTR_VALUE(const std::wstring &, WSTRING)
#if FMT_HAS_STRING_VIEW
  FMT_MAKE_WSTR_VALUE(const std::wstring_view &, WSTRING)
#endif
  FMT_MAKE_WSTR_VALUE(WStringRef, WSTRING)

  FMT_MAKE_VALUE(void *, pointer, POINTER)
  FMT_MAKE_VALUE(const void *, pointer, POINTER)

  template <typename T>
  MakeValue(const T &value,
            typename EnableIf<Not<
              ConvertToInt<T>::value>::value, int>::type = 0) {
    custom.value = &value;
    custom.format = &format_custom_arg<T>;
  }

  template <typename T>
  static typename EnableIf<Not<ConvertToInt<T>::value>::value, uint64_t>::type
      type(const T &) {
    return Arg::CUSTOM;
  }

  // Additional template param `Char_` is needed here because make_type always
  // uses char.
  template <typename Char_>
  MakeValue(const NamedArg<Char_> &value) { pointer = &value; }
  template <typename Char_, typename T>
  MakeValue(const NamedArgWithType<Char_, T> &value) { pointer = &value; }

  template <typename Char_>
  static uint64_t type(const NamedArg<Char_> &) { return Arg::NAMED_ARG; }
  template <typename Char_, typename T>
  static uint64_t type(const NamedArgWithType<Char_, T> &) { return Arg::NAMED_ARG; }
};

template <typename Formatter>
class MakeArg : public Arg {
public:
  MakeArg() {
    type = Arg::NONE;
  }

  template <typename T>
  MakeArg(const T &value)
  : Arg(MakeValue<Formatter>(value)) {
    type = static_cast<Arg::Type>(MakeValue<Formatter>::type(value));
  }
};

template <typename Char>
struct NamedArg : Arg {
  BasicStringRef<Char> name;

  template <typename T>
  NamedArg(BasicStringRef<Char> argname, const T &value)
  : Arg(MakeArg< BasicFormatter<Char> >(value)), name(argname) {}
};

template <typename Char, typename T>
struct NamedArgWithType : NamedArg<Char> {
  NamedArgWithType(BasicStringRef<Char> argname, const T &value)
  : NamedArg<Char>(argname, value) {}
};

class RuntimeError : public std::runtime_error {
 protected:
  RuntimeError() : std::runtime_error("") {}
  RuntimeError(const RuntimeError &rerr) : std::runtime_error(rerr) {}
  FMT_API ~RuntimeError() FMT_DTOR_NOEXCEPT FMT_OVERRIDE;
};

template <typename Char>
class ArgMap;
}  // namespace internal

/** An argument list. */
class ArgList {
 private:
  // To reduce compiled code size per formatting function call, types of first
  // MAX_PACKED_ARGS arguments are passed in the types_ field.
  uint64_t types_;
  union {
    // If the number of arguments is less than MAX_PACKED_ARGS, the argument
    // values are stored in values_, otherwise they are stored in args_.
    // This is done to reduce compiled code size as storing larger objects
    // may require more code (at least on x86-64) even if the same amount of
    // data is actually copied to stack. It saves ~10% on the bloat test.
    const internal::Value *values_;
    const internal::Arg *args_;
  };

  internal::Arg::Type type(unsigned index) const {
    return type(types_, index);
  }

  template <typename Char>
  friend class internal::ArgMap;

 public:
  // Maximum number of arguments with packed types.
  enum { MAX_PACKED_ARGS = 16 };

  ArgList() : types_(0) {}

  ArgList(ULongLong types, const internal::Value *values)
  : types_(types), values_(values) {}
  ArgList(ULongLong types, const internal::Arg *args)
  : types_(types), args_(args) {}

  uint64_t types() const { return types_; }

  /** Returns the argument at specified index. */
  internal::Arg operator[](unsigned index) const {
    using internal::Arg;
    Arg arg;
    bool use_values = type(MAX_PACKED_ARGS - 1) == Arg::NONE;
    if (index < MAX_PACKED_ARGS) {
      Arg::Type arg_type = type(index);
      internal::Value &val = arg;
      if (arg_type != Arg::NONE)
        val = use_values ? values_[index] : args_[index];
      arg.type = arg_type;
      return arg;
    }
    if (use_values) {
      // The index is greater than the number of arguments that can be stored
      // in values, so return a "none" argument.
      arg.type = Arg::NONE;
      return arg;
    }
    for (unsigned i = MAX_PACKED_ARGS; i <= index; ++i) {
      if (args_[i].type == Arg::NONE)
        return args_[i];
    }
    return args_[index];
  }

  static internal::Arg::Type type(uint64_t types, unsigned index) {
    unsigned shift = index * 4;
    uint64_t mask = 0xf;
    return static_cast<internal::Arg::Type>(
          (types & (mask << shift)) >> shift);
  }
};

#define FMT_DISPATCH(call) static_cast<Impl*>(this)->call

/**
  \rst
  An argument visitor based on the `curiously recurring template pattern
  <http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern>`_.

  To use `~fmt::ArgVisitor` define a subclass that implements some or all of the
  visit methods with the same signatures as the methods in `~fmt::ArgVisitor`,
  for example, `~fmt::ArgVisitor::visit_int()`.
  Pass the subclass as the *Impl* template parameter. Then calling
  `~fmt::ArgVisitor::visit` for some argument will dispatch to a visit method
  specific to the argument type. For example, if the argument type is
  ``double`` then the `~fmt::ArgVisitor::visit_double()` method of a subclass
  will be called. If the subclass doesn't contain a method with this signature,
  then a corresponding method of `~fmt::ArgVisitor` will be called.

  **Example**::

    class MyArgVisitor : public fmt::ArgVisitor<MyArgVisitor, void> {
     public:
      void visit_int(int value) { fmt::print("{}", value); }
      void visit_double(double value) { fmt::print("{}", value ); }
    };
  \endrst
 */
template <typename Impl, typename Result>
class ArgVisitor {
 private:
  typedef internal::Arg Arg;

 public:
  void report_unhandled_arg() {}

  Result visit_unhandled_arg() {
    FMT_DISPATCH(report_unhandled_arg());
    return Result();
  }

  /** Visits an ``int`` argument. **/
  Result visit_int(int value) {
    return FMT_DISPATCH(visit_any_int(value));
  }

  /** Visits a ``long long`` argument. **/
  Result visit_long_long(LongLong value) {
    return FMT_DISPATCH(visit_any_int(value));
  }

  /** Visits an ``unsigned`` argument. **/
  Result visit_uint(unsigned value) {
    return FMT_DISPATCH(visit_any_int(value));
  }

  /** Visits an ``unsigned long long`` argument. **/
  Result visit_ulong_long(ULongLong value) {
    return FMT_DISPATCH(visit_any_int(value));
  }

  /** Visits a ``bool`` argument. **/
  Result visit_bool(bool value) {
    return FMT_DISPATCH(visit_any_int(value));
  }

  /** Visits a ``char`` or ``wchar_t`` argument. **/
  Result visit_char(int value) {
    return FMT_DISPATCH(visit_any_int(value));
  }

  /** Visits an argument of any integral type. **/
  template <typename T>
  Result visit_any_int(T) {
    return FMT_DISPATCH(visit_unhandled_arg());
  }

  /** Visits a ``double`` argument. **/
  Result visit_double(double value) {
    return FMT_DISPATCH(visit_any_double(value));
  }

  /** Visits a ``long double`` argument. **/
  Result visit_long_double(long double value) {
    return FMT_DISPATCH(visit_any_double(value));
  }

  /** Visits a ``double`` or ``long double`` argument. **/
  template <typename T>
  Result visit_any_double(T) {
    return FMT_DISPATCH(visit_unhandled_arg());
  }

  /** Visits a null-terminated C string (``const char *``) argument. **/
  Result visit_cstring(const char *) {
    return FMT_DISPATCH(visit_unhandled_arg());
  }

  /** Visits a string argument. **/
  Result visit_string(Arg::StringValue<char>) {
    return FMT_DISPATCH(visit_unhandled_arg());
  }

  /** Visits a wide string argument. **/
  Result visit_wstring(Arg::StringValue<wchar_t>) {
    return FMT_DISPATCH(visit_unhandled_arg());
  }

  /** Visits a pointer argument. **/
  Result visit_pointer(const void *) {
    return FMT_DISPATCH(visit_unhandled_arg());
  }

  /** Visits an argument of a custom (user-defined) type. **/
  Result visit_custom(Arg::CustomValue) {
    return FMT_DISPATCH(visit_unhandled_arg());
  }

  /**
    \rst
    Visits an argument dispatching to the appropriate visit method based on
    the argument type. For example, if the argument type is ``double`` then
    the `~fmt::ArgVisitor::visit_double()` method of the *Impl* class will be
    called.
    \endrst
   */
  Result visit(const Arg &arg) {
    switch (arg.type) {
    case Arg::NONE:
    case Arg::NAMED_ARG:
      FMT_ASSERT(false, "invalid argument type");
      break;
    case Arg::INT:
      return FMT_DISPATCH(visit_int(arg.int_value));
    case Arg::UINT:
      return FMT_DISPATCH(visit_uint(arg.uint_value));
    case Arg::LONG_LONG:
      return FMT_DISPATCH(visit_long_long(arg.long_long_value));
    case Arg::ULONG_LONG:
      return FMT_DISPATCH(visit_ulong_long(arg.ulong_long_value));
    case Arg::BOOL:
      return FMT_DISPATCH(visit_bool(arg.int_value != 0));
    case Arg::CHAR:
      return FMT_DISPATCH(visit_char(arg.int_value));
    case Arg::DOUBLE:
      return FMT_DISPATCH(visit_double(arg.double_value));
    case Arg::LONG_DOUBLE:
      return FMT_DISPATCH(visit_long_double(arg.long_double_value));
    case Arg::CSTRING:
      return FMT_DISPATCH(visit_cstring(arg.string.value));
    case Arg::STRING:
      return FMT_DISPATCH(visit_string(arg.string));
    case Arg::WSTRING:
      return FMT_DISPATCH(visit_wstring(arg.wstring));
    case Arg::POINTER:
      return FMT_DISPATCH(visit_pointer(arg.pointer));
    case Arg::CUSTOM:
      return FMT_DISPATCH(visit_custom(arg.custom));
    }
    return Result();
  }
};

enum Alignment {
  ALIGN_DEFAULT, ALIGN_LEFT, ALIGN_RIGHT, ALIGN_CENTER, ALIGN_NUMERIC
};

// Flags.
enum {
  SIGN_FLAG = 1, PLUS_FLAG = 2, MINUS_FLAG = 4, HASH_FLAG = 8,
  CHAR_FLAG = 0x10  // Argument has char type - used in error reporting.
};

// An empty format specifier.
struct EmptySpec {};

// A type specifier.
template <char TYPE>
struct TypeSpec : EmptySpec {
  Alignment align() const { return ALIGN_DEFAULT; }
  unsigned width() const { return 0; }
  int precision() const { return -1; }
  bool flag(unsigned) const { return false; }
  char type() const { return TYPE; }
  char type_prefix() const { return TYPE; }
  char fill() const { return ' '; }
};

// A width specifier.
struct WidthSpec {
  unsigned width_;
  // Fill is always wchar_t and cast to char if necessary to avoid having
  // two specialization of WidthSpec and its subclasses.
  wchar_t fill_;

  WidthSpec(unsigned width, wchar_t fill) : width_(width), fill_(fill) {}

  unsigned width() const { return width_; }
  wchar_t fill() const { return fill_; }
};

// An alignment specifier.
struct AlignSpec : WidthSpec {
  Alignment align_;

  AlignSpec(unsigned width, wchar_t fill, Alignment align = ALIGN_DEFAULT)
  : WidthSpec(width, fill), align_(align) {}

  Alignment align() const { return align_; }

  int precision() const { return -1; }
};

// An alignment and type specifier.
template <char TYPE>
struct AlignTypeSpec : AlignSpec {
  AlignTypeSpec(unsigned width, wchar_t fill) : AlignSpec(width, fill) {}

  bool flag(unsigned) const { return false; }
  char type() const { return TYPE; }
  char type_prefix() const { return TYPE; }
};

// A full format specifier.
struct FormatSpec : AlignSpec {
  unsigned flags_;
  int precision_;
  char type_;

  FormatSpec(
    unsigned width = 0, char type = 0, wchar_t fill = ' ')
  : AlignSpec(width, fill), flags_(0), precision_(-1), type_(type) {}

  bool flag(unsigned f) const { return (flags_ & f) != 0; }
  int precision() const { return precision_; }
  char type() const { return type_; }
  char type_prefix() const { return type_; }
};

// An integer format specifier.
template <typename T, typename SpecT = TypeSpec<0>, typename Char = char>
class IntFormatSpec : public SpecT {
 private:
  T value_;

 public:
  IntFormatSpec(T val, const SpecT &spec = SpecT())
  : SpecT(spec), value_(val) {}

  T value() const { return value_; }
};

// A string format specifier.
template <typename Char>
class StrFormatSpec : public AlignSpec {
 private:
  const Char *str_;

 public:
  template <typename FillChar>
  StrFormatSpec(const Char *str, unsigned width, FillChar fill)
  : AlignSpec(width, fill), str_(str) {
    internal::CharTraits<Char>::convert(FillChar());
  }

  const Char *str() const { return str_; }
};

/**
  Returns an integer format specifier to format the value in base 2.
 */
IntFormatSpec<int, TypeSpec<'b'> > bin(int value);

/**
  Returns an integer format specifier to format the value in base 8.
 */
IntFormatSpec<int, TypeSpec<'o'> > oct(int value);

/**
  Returns an integer format specifier to format the value in base 16 using
  lower-case letters for the digits above 9.
 */
IntFormatSpec<int, TypeSpec<'x'> > hex(int value);

/**
  Returns an integer formatter format specifier to format in base 16 using
  upper-case letters for the digits above 9.
 */
IntFormatSpec<int, TypeSpec<'X'> > hexu(int value);

/**
  \rst
  Returns an integer format specifier to pad the formatted argument with the
  fill character to the specified width using the default (right) numeric
  alignment.

  **Example**::

    MemoryWriter out;
    out << pad(hex(0xcafe), 8, '0');
    // out.str() == "0000cafe"

  \endrst
 */
template <char TYPE_CODE, typename Char>
IntFormatSpec<int, AlignTypeSpec<TYPE_CODE>, Char> pad(
    int value, unsigned width, Char fill = ' ');

#define FMT_DEFINE_INT_FORMATTERS(TYPE) \
inline IntFormatSpec<TYPE, TypeSpec<'b'> > bin(TYPE value) { \
  return IntFormatSpec<TYPE, TypeSpec<'b'> >(value, TypeSpec<'b'>()); \
} \
 \
inline IntFormatSpec<TYPE, TypeSpec<'o'> > oct(TYPE value) { \
  return IntFormatSpec<TYPE, TypeSpec<'o'> >(value, TypeSpec<'o'>()); \
} \
 \
inline IntFormatSpec<TYPE, TypeSpec<'x'> > hex(TYPE value) { \
  return IntFormatSpec<TYPE, TypeSpec<'x'> >(value, TypeSpec<'x'>()); \
} \
 \
inline IntFormatSpec<TYPE, TypeSpec<'X'> > hexu(TYPE value) { \
  return IntFormatSpec<TYPE, TypeSpec<'X'> >(value, TypeSpec<'X'>()); \
} \
 \
template <char TYPE_CODE> \
inline IntFormatSpec<TYPE, AlignTypeSpec<TYPE_CODE> > pad( \
    IntFormatSpec<TYPE, TypeSpec<TYPE_CODE> > f, unsigned width) { \
  return IntFormatSpec<TYPE, AlignTypeSpec<TYPE_CODE> >( \
      f.value(), AlignTypeSpec<TYPE_CODE>(width, ' ')); \
} \
 \
/* For compatibility with older compilers we provide two overloads for pad, */ \
/* one that takes a fill character and one that doesn't. In the future this */ \
/* can be replaced with one overload making the template argument Char      */ \
/* default to char (C++11). */ \
template <char TYPE_CODE, typename Char> \
inline IntFormatSpec<TYPE, AlignTypeSpec<TYPE_CODE>, Char> pad( \
    IntFormatSpec<TYPE, TypeSpec<TYPE_CODE>, Char> f, \
    unsigned width, Char fill) { \
  return IntFormatSpec<TYPE, AlignTypeSpec<TYPE_CODE>, Char>( \
      f.value(), AlignTypeSpec<TYPE_CODE>(width, fill)); \
} \
 \
inline IntFormatSpec<TYPE, AlignTypeSpec<0> > pad( \
    TYPE value, unsigned width) { \
  return IntFormatSpec<TYPE, AlignTypeSpec<0> >( \
      value, AlignTypeSpec<0>(width, ' ')); \
} \
 \
template <typename Char> \
inline IntFormatSpec<TYPE, AlignTypeSpec<0>, Char> pad( \
   TYPE value, unsigned width, Char fill) { \
 return IntFormatSpec<TYPE, AlignTypeSpec<0>, Char>( \
     value, AlignTypeSpec<0>(width, fill)); \
}

FMT_DEFINE_INT_FORMATTERS(int)
FMT_DEFINE_INT_FORMATTERS(long)
FMT_DEFINE_INT_FORMATTERS(unsigned)
FMT_DEFINE_INT_FORMATTERS(unsigned long)
FMT_DEFINE_INT_FORMATTERS(LongLong)
FMT_DEFINE_INT_FORMATTERS(ULongLong)

/**
  \rst
  Returns a string formatter that pads the formatted argument with the fill
  character to the specified width using the default (left) string alignment.

  **Example**::

    std::string s = str(MemoryWriter() << pad("abc", 8));
    // s == "abc     "

  \endrst
 */
template <typename Char>
inline StrFormatSpec<Char> pad(
    const Char *str, unsigned width, Char fill = ' ') {
  return StrFormatSpec<Char>(str, width, fill);
}

inline StrFormatSpec<wchar_t> pad(
    const wchar_t *str, unsigned width, char fill = ' ') {
  return StrFormatSpec<wchar_t>(str, width, fill);
}

namespace internal {

template <typename Char>
class ArgMap {
 private:
  typedef std::vector<
    std::pair<fmt::BasicStringRef<Char>, internal::Arg> > MapType;
  typedef typename MapType::value_type Pair;

  MapType map_;

 public:
  void init(const ArgList &args);

  const internal::Arg *find(const fmt::BasicStringRef<Char> &name) const {
    // The list is unsorted, so just return the first matching name.
    for (typename MapType::const_iterator it = map_.begin(), end = map_.end();
         it != end; ++it) {
      if (it->first == name)
        return &it->second;
    }
    return FMT_NULL;
  }
};

template <typename Char>
void ArgMap<Char>::init(const ArgList &args) {
  if (!map_.empty())
    return;
  typedef internal::NamedArg<Char> NamedArg;
  const NamedArg *named_arg = FMT_NULL;
  bool use_values =
      args.type(ArgList::MAX_PACKED_ARGS - 1) == internal::Arg::NONE;
  if (use_values) {
    for (unsigned i = 0;/*nothing*/; ++i) {
      internal::Arg::Type arg_type = args.type(i);
      switch (arg_type) {
      case internal::Arg::NONE:
        return;
      case internal::Arg::NAMED_ARG:
        named_arg = static_cast<const NamedArg*>(args.values_[i].pointer);
        map_.push_back(Pair(named_arg->name, *named_arg));
        break;
      default:
        /*nothing*/;
      }
    }
    return;
  }
  for (unsigned i = 0; i != ArgList::MAX_PACKED_ARGS; ++i) {
    internal::Arg::Type arg_type = args.type(i);
    if (arg_type == internal::Arg::NAMED_ARG) {
      named_arg = static_cast<const NamedArg*>(args.args_[i].pointer);
      map_.push_back(Pair(named_arg->name, *named_arg));
    }
  }
  for (unsigned i = ArgList::MAX_PACKED_ARGS;/*nothing*/; ++i) {
    switch (args.args_[i].type) {
    case internal::Arg::NONE:
      return;
    case internal::Arg::NAMED_ARG:
      named_arg = static_cast<const NamedArg*>(args.args_[i].pointer);
      map_.push_back(Pair(named_arg->name, *named_arg));
      break;
    default:
      /*nothing*/;
    }
  }
}

template <typename Impl, typename Char, typename Spec = fmt::FormatSpec>
class ArgFormatterBase : public ArgVisitor<Impl, void> {
 private:
  BasicWriter<Char> &writer_;
  Spec &spec_;

  FMT_DISALLOW_COPY_AND_ASSIGN(ArgFormatterBase);

  void write_pointer(const void *p) {
    spec_.flags_ = HASH_FLAG;
    spec_.type_ = 'x';
    writer_.write_int(reinterpret_cast<uintptr_t>(p), spec_);
  }

  // workaround MSVC two-phase lookup issue
  typedef internal::Arg Arg;

 protected:
  BasicWriter<Char> &writer() { return writer_; }
  Spec &spec() { return spec_; }

  void write(bool value) {
    const char *str_value = value ? "true" : "false";
    Arg::StringValue<char> str = { str_value, std::strlen(str_value) };
    writer_.write_str(str, spec_);
  }

  void write(const char *value) {
    Arg::StringValue<char> str = {value, value ? std::strlen(value) : 0};
    writer_.write_str(str, spec_);
  }

 public:
  typedef Spec SpecType;

  ArgFormatterBase(BasicWriter<Char> &w, Spec &s)
  : writer_(w), spec_(s) {}

  template <typename T>
  void visit_any_int(T value) { writer_.write_int(value, spec_); }

  template <typename T>
  void visit_any_double(T value) { writer_.write_double(value, spec_); }

  void visit_bool(bool value) {
    if (spec_.type_) {
      visit_any_int(value);
      return;
    }
    write(value);
  }

  void visit_char(int value) {
    if (spec_.type_ && spec_.type_ != 'c') {
      spec_.flags_ |= CHAR_FLAG;
      writer_.write_int(value, spec_);
      return;
    }
    if (spec_.align_ == ALIGN_NUMERIC || spec_.flags_ != 0)
      FMT_THROW(FormatError("invalid format specifier for char"));
    typedef typename BasicWriter<Char>::CharPtr CharPtr;
    Char fill = internal::CharTraits<Char>::cast(spec_.fill());
    CharPtr out = CharPtr();
    const unsigned CHAR_SIZE = 1;
    if (spec_.width_ > CHAR_SIZE) {
      out = writer_.grow_buffer(spec_.width_);
      if (spec_.align_ == ALIGN_RIGHT) {
        std::uninitialized_fill_n(out, spec_.width_ - CHAR_SIZE, fill);
        out += spec_.width_ - CHAR_SIZE;
      } else if (spec_.align_ == ALIGN_CENTER) {
        out = writer_.fill_padding(out, spec_.width_,
                                   internal::const_check(CHAR_SIZE), fill);
      } else {
        std::uninitialized_fill_n(out + CHAR_SIZE,
                                  spec_.width_ - CHAR_SIZE, fill);
      }
    } else {
      out = writer_.grow_buffer(CHAR_SIZE);
    }
    *out = internal::CharTraits<Char>::cast(value);
  }

  void visit_cstring(const char *value) {
    if (spec_.type_ == 'p')
      return write_pointer(value);
    write(value);
  }

  // Qualification with "internal" here and below is a workaround for nvcc.
  void visit_string(internal::Arg::StringValue<char> value) {
    writer_.write_str(value, spec_);
  }

  using ArgVisitor<Impl, void>::visit_wstring;

  void visit_wstring(internal::Arg::StringValue<Char> value) {
    writer_.write_str(value, spec_);
  }

  void visit_pointer(const void *value) {
    if (spec_.type_ && spec_.type_ != 'p')
      report_unknown_type(spec_.type_, "pointer");
    write_pointer(value);
  }
};

class FormatterBase {
 private:
  ArgList args_;
  int next_arg_index_;

  // Returns the argument with specified index.
  FMT_API Arg do_get_arg(unsigned arg_index, const char *&error);

 protected:
  const ArgList &args() const { return args_; }

  explicit FormatterBase(const ArgList &args) {
    args_ = args;
    next_arg_index_ = 0;
  }

  // Returns the next argument.
  Arg next_arg(const char *&error) {
    if (next_arg_index_ >= 0)
      return do_get_arg(internal::to_unsigned(next_arg_index_++), error);
    error = "cannot switch from manual to automatic argument indexing";
    return Arg();
  }

  // Checks if manual indexing is used and returns the argument with
  // specified index.
  Arg get_arg(unsigned arg_index, const char *&error) {
    return check_no_auto_index(error) ? do_get_arg(arg_index, error) : Arg();
  }

  bool check_no_auto_index(const char *&error) {
    if (next_arg_index_ > 0) {
      error = "cannot switch from automatic to manual argument indexing";
      return false;
    }
    next_arg_index_ = -1;
    return true;
  }

  template <typename Char>
  void write(BasicWriter<Char> &w, const Char *start, const Char *end) {
    if (start != end)
      w << BasicStringRef<Char>(start, internal::to_unsigned(end - start));
  }
};
}  // namespace internal

/**
  \rst
  An argument formatter based on the `curiously recurring template pattern
  <http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern>`_.

  To use `~fmt::BasicArgFormatter` define a subclass that implements some or
  all of the visit methods with the same signatures as the methods in
  `~fmt::ArgVisitor`, for example, `~fmt::ArgVisitor::visit_int()`.
  Pass the subclass as the *Impl* template parameter. When a formatting
  function processes an argument, it will dispatch to a visit method
  specific to the argument type. For example, if the argument type is
  ``double`` then the `~fmt::ArgVisitor::visit_double()` method of a subclass
  will be called. If the subclass doesn't contain a method with this signature,
  then a corresponding method of `~fmt::BasicArgFormatter` or its superclass
  will be called.
  \endrst
 */
template <typename Impl, typename Char, typename Spec = fmt::FormatSpec>
class BasicArgFormatter : public internal::ArgFormatterBase<Impl, Char, Spec> {
 private:
  BasicFormatter<Char, Impl> &formatter_;
  const Char *format_;

 public:
  /**
    \rst
    Constructs an argument formatter object.
    *formatter* is a reference to the main formatter object, *spec* contains
    format specifier information for standard argument types, and *fmt* points
    to the part of the format string being parsed for custom argument types.
    \endrst
   */
  BasicArgFormatter(BasicFormatter<Char, Impl> &formatter,
                    Spec &spec, const Char *fmt)
  : internal::ArgFormatterBase<Impl, Char, Spec>(formatter.writer(), spec),
    formatter_(formatter), format_(fmt) {}

  /** Formats an argument of a custom (user-defined) type. */
  void visit_custom(internal::Arg::CustomValue c) {
    c.format(&formatter_, c.value, &format_);
  }
};

/** The default argument formatter. */
template <typename Char>
class ArgFormatter :
    public BasicArgFormatter<ArgFormatter<Char>, Char, FormatSpec> {
 public:
  /** Constructs an argument formatter object. */
  ArgFormatter(BasicFormatter<Char> &formatter,
               FormatSpec &spec, const Char *fmt)
  : BasicArgFormatter<ArgFormatter<Char>,
                      Char, FormatSpec>(formatter, spec, fmt) {}
};

/** This template formats data and writes the output to a writer. */
template <typename CharType, typename ArgFormatter>
class BasicFormatter : private internal::FormatterBase {
 public:
  /** The character type for the output. */
  typedef CharType Char;

 private:
  BasicWriter<Char> &writer_;
  internal::ArgMap<Char> map_;

  FMT_DISALLOW_COPY_AND_ASSIGN(BasicFormatter);

  using internal::FormatterBase::get_arg;

  // Checks if manual indexing is used and returns the argument with
  // specified name.
  internal::Arg get_arg(BasicStringRef<Char> arg_name, const char *&error);

  // Parses argument index and returns corresponding argument.
  internal::Arg parse_arg_index(const Char *&s);

  // Parses argument name and returns corresponding argument.
  internal::Arg parse_arg_name(const Char *&s);

 public:
  /**
   \rst
   Constructs a ``BasicFormatter`` object. References to the arguments and
   the writer are stored in the formatter object so make sure they have
   appropriate lifetimes.
   \endrst
   */
  BasicFormatter(const ArgList &args, BasicWriter<Char> &w)
    : internal::FormatterBase(args), writer_(w) {}

  /** Returns a reference to the writer associated with this formatter. */
  BasicWriter<Char> &writer() { return writer_; }

  /** Formats stored arguments and writes the output to the writer. */
  void format(BasicCStringRef<Char> format_str);

  // Formats a single argument and advances format_str, a format string pointer.
  const Char *format(const Char *&format_str, const internal::Arg &arg);
};

// Generates a comma-separated list with results of applying f to
// numbers 0..n-1.
# define FMT_GEN(n, f) FMT_GEN##n(f)
# define FMT_GEN1(f)  f(0)
# define FMT_GEN2(f)  FMT_GEN1(f),  f(1)
# define FMT_GEN3(f)  FMT_GEN2(f),  f(2)
# define FMT_GEN4(f)  FMT_GEN3(f),  f(3)
# define FMT_GEN5(f)  FMT_GEN4(f),  f(4)
# define FMT_GEN6(f)  FMT_GEN5(f),  f(5)
# define FMT_GEN7(f)  FMT_GEN6(f),  f(6)
# define FMT_GEN8(f)  FMT_GEN7(f),  f(7)
# define FMT_GEN9(f)  FMT_GEN8(f),  f(8)
# define FMT_GEN10(f) FMT_GEN9(f),  f(9)
# define FMT_GEN11(f) FMT_GEN10(f), f(10)
# define FMT_GEN12(f) FMT_GEN11(f), f(11)
# define FMT_GEN13(f) FMT_GEN12(f), f(12)
# define FMT_GEN14(f) FMT_GEN13(f), f(13)
# define FMT_GEN15(f) FMT_GEN14(f), f(14)

namespace internal {
inline uint64_t make_type() { return 0; }

template <typename T>
inline uint64_t make_type(const T &arg) {
  return MakeValue< BasicFormatter<char> >::type(arg);
}

template <std::size_t N, bool/*IsPacked*/= (N < ArgList::MAX_PACKED_ARGS)>
struct ArgArray;

template <std::size_t N>
struct ArgArray<N, true/*IsPacked*/> {
  // '+' is used to silence GCC -Wduplicated-branches warning.
  typedef Value Type[N > 0 ? N : +1];

  template <typename Formatter, typename T>
  static Value make(const T &value) {
#ifdef __clang__
    Value result = MakeValue<Formatter>(value);
    // Workaround a bug in Apple LLVM version 4.2 (clang-425.0.28) of clang:
    // https://github.com/fmtlib/fmt/issues/276
    (void)result.custom.format;
    return result;
#else
    return MakeValue<Formatter>(value);
#endif
  }
};

template <std::size_t N>
struct ArgArray<N, false/*IsPacked*/> {
  typedef Arg Type[N + 1]; // +1 for the list end Arg::NONE

  template <typename Formatter, typename T>
  static Arg make(const T &value) { return MakeArg<Formatter>(value); }
};

#if FMT_USE_VARIADIC_TEMPLATES
template <typename Arg, typename... Args>
inline uint64_t make_type(const Arg &first, const Args & ... tail) {
  return make_type(first) | (make_type(tail...) << 4);
}

#else

struct ArgType {
  uint64_t type;

  ArgType() : type(0) {}

  template <typename T>
  ArgType(const T &arg) : type(make_type(arg)) {}
};

# define FMT_ARG_TYPE_DEFAULT(n) ArgType t##n = ArgType()

inline uint64_t make_type(FMT_GEN15(FMT_ARG_TYPE_DEFAULT)) {
  return t0.type | (t1.type << 4) | (t2.type << 8) | (t3.type << 12) |
      (t4.type << 16) | (t5.type << 20) | (t6.type << 24) | (t7.type << 28) |
      (t8.type << 32) | (t9.type << 36) | (t10.type << 40) | (t11.type << 44) |
      (t12.type << 48) | (t13.type << 52) | (t14.type << 56);
}
#endif
}  // namespace internal

# define FMT_MAKE_TEMPLATE_ARG(n) typename T##n
# define FMT_MAKE_ARG_TYPE(n) T##n
# define FMT_MAKE_ARG(n) const T##n &v##n
# define FMT_ASSIGN_char(n) \
  arr[n] = fmt::internal::MakeValue< fmt::BasicFormatter<char> >(v##n)
# define FMT_ASSIGN_wchar_t(n) \
  arr[n] = fmt::internal::MakeValue< fmt::BasicFormatter<wchar_t> >(v##n)

#if FMT_USE_VARIADIC_TEMPLATES
// Defines a variadic function returning void.
# define FMT_VARIADIC_VOID(func, arg_type) \
  template <typename... Args> \
  void func(arg_type arg0, const Args & ... args) { \
    typedef fmt::internal::ArgArray<sizeof...(Args)> ArgArray; \
    typename ArgArray::Type array{ \
      ArgArray::template make<fmt::BasicFormatter<Char> >(args)...}; \
    func(arg0, fmt::ArgList(fmt::internal::make_type(args...), array)); \
  }

// Defines a variadic constructor.
# define FMT_VARIADIC_CTOR(ctor, func, arg0_type, arg1_type) \
  template <typename... Args> \
  ctor(arg0_type arg0, arg1_type arg1, const Args & ... args) { \
    typedef fmt::internal::ArgArray<sizeof...(Args)> ArgArray; \
    typename ArgArray::Type array{ \
      ArgArray::template make<fmt::BasicFormatter<Char> >(args)...}; \
    func(arg0, arg1, fmt::ArgList(fmt::internal::make_type(args...), array)); \
  }

#else

# define FMT_MAKE_REF(n) \
  fmt::internal::MakeValue< fmt::BasicFormatter<Char> >(v##n)
# define FMT_MAKE_REF2(n) v##n

// Defines a wrapper for a function taking one argument of type arg_type
// and n additional arguments of arbitrary types.
# define FMT_WRAP1(func, arg_type, n) \
  template <FMT_GEN(n, FMT_MAKE_TEMPLATE_ARG)> \
  inline void func(arg_type arg1, FMT_GEN(n, FMT_MAKE_ARG)) { \
    const fmt::internal::ArgArray<n>::Type array = {FMT_GEN(n, FMT_MAKE_REF)}; \
    func(arg1, fmt::ArgList( \
      fmt::internal::make_type(FMT_GEN(n, FMT_MAKE_REF2)), array)); \
  }

// Emulates a variadic function returning void on a pre-C++11 compiler.
# define FMT_VARIADIC_VOID(func, arg_type) \
  inline void func(arg_type arg) { func(arg, fmt::ArgList()); } \
  FMT_WRAP1(func, arg_type, 1) FMT_WRAP1(func, arg_type, 2) \
  FMT_WRAP1(func, arg_type, 3) FMT_WRAP1(func, arg_type, 4) \
  FMT_WRAP1(func, arg_type, 5) FMT_WRAP1(func, arg_type, 6) \
  FMT_WRAP1(func, arg_type, 7) FMT_WRAP1(func, arg_type, 8) \
  FMT_WRAP1(func, arg_type, 9) FMT_WRAP1(func, arg_type, 10)

# define FMT_CTOR(ctor, func, arg0_type, arg1_type, n) \
  template <FMT_GEN(n, FMT_MAKE_TEMPLATE_ARG)> \
  ctor(arg0_type arg0, arg1_type arg1, FMT_GEN(n, FMT_MAKE_ARG)) { \
    const fmt::internal::ArgArray<n>::Type array = {FMT_GEN(n, FMT_MAKE_REF)}; \
    func(arg0, arg1, fmt::ArgList( \
      fmt::internal::make_type(FMT_GEN(n, FMT_MAKE_REF2)), array)); \
  }

// Emulates a variadic constructor on a pre-C++11 compiler.
# define FMT_VARIADIC_CTOR(ctor, func, arg0_type, arg1_type) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 1) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 2) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 3) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 4) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 5) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 6) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 7) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 8) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 9) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 10)
#endif

// Generates a comma-separated list with results of applying f to pairs
// (argument, index).
#define FMT_FOR_EACH1(f, x0) f(x0, 0)
#define FMT_FOR_EACH2(f, x0, x1) \
  FMT_FOR_EACH1(f, x0), f(x1, 1)
#define FMT_FOR_EACH3(f, x0, x1, x2) \
  FMT_FOR_EACH2(f, x0 ,x1), f(x2, 2)
#define FMT_FOR_EACH4(f, x0, x1, x2, x3) \
  FMT_FOR_EACH3(f, x0, x1, x2), f(x3, 3)
#define FMT_FOR_EACH5(f, x0, x1, x2, x3, x4) \
  FMT_FOR_EACH4(f, x0, x1, x2, x3), f(x4, 4)
#define FMT_FOR_EACH6(f, x0, x1, x2, x3, x4, x5) \
  FMT_FOR_EACH5(f, x0, x1, x2, x3, x4), f(x5, 5)
#define FMT_FOR_EACH7(f, x0, x1, x2, x3, x4, x5, x6) \
  FMT_FOR_EACH6(f, x0, x1, x2, x3, x4, x5), f(x6, 6)
#define FMT_FOR_EACH8(f, x0, x1, x2, x3, x4, x5, x6, x7) \
  FMT_FOR_EACH7(f, x0, x1, x2, x3, x4, x5, x6), f(x7, 7)
#define FMT_FOR_EACH9(f, x0, x1, x2, x3, x4, x5, x6, x7, x8) \
  FMT_FOR_EACH8(f, x0, x1, x2, x3, x4, x5, x6, x7), f(x8, 8)
#define FMT_FOR_EACH10(f, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) \
  FMT_FOR_EACH9(f, x0, x1, x2, x3, x4, x5, x6, x7, x8), f(x9, 9)

/**
 An error returned by an operating system or a language runtime,
 for example a file opening error.
*/
class SystemError : public internal::RuntimeError {
 private:
  FMT_API void init(int err_code, CStringRef format_str, ArgList args);

 protected:
  int error_code_;

  typedef char Char;  // For FMT_VARIADIC_CTOR.

  SystemError() {}

 public:
  /**
   \rst
   Constructs a :class:`fmt::SystemError` object with a description
   formatted with `fmt::format_system_error`. *message* and additional
   arguments passed into the constructor are formatted similarly to
   `fmt::format`.

   **Example**::

     // This throws a SystemError with the description
     //   cannot open file 'madeup': No such file or directory
     // or similar (system message may vary).
     const char *filename = "madeup";
     std::FILE *file = std::fopen(filename, "r");
     if (!file)
       throw fmt::SystemError(errno, "cannot open file '{}'", filename);
   \endrst
  */
  SystemError(int error_code, CStringRef message) {
    init(error_code, message, ArgList());
  }
  FMT_DEFAULTED_COPY_CTOR(SystemError)
  FMT_VARIADIC_CTOR(SystemError, init, int, CStringRef)

  FMT_API ~SystemError() FMT_DTOR_NOEXCEPT FMT_OVERRIDE;

  int error_code() const { return error_code_; }
};

/**
  \rst
  Formats an error returned by an operating system or a language runtime,
  for example a file opening error, and writes it to *out* in the following
  form:

  .. parsed-literal::
     *<message>*: *<system-message>*

  where *<message>* is the passed message and *<system-message>* is
  the system message corresponding to the error code.
  *error_code* is a system error code as given by ``errno``.
  If *error_code* is not a valid error code such as -1, the system message
  may look like "Unknown error -1" and is platform-dependent.
  \endrst
 */
FMT_API void format_system_error(fmt::Writer &out, int error_code,
                                 fmt::StringRef message) FMT_NOEXCEPT;

/**
  \rst
  This template provides operations for formatting and writing data into
  a character stream. The output is stored in a buffer provided by a subclass
  such as :class:`fmt::BasicMemoryWriter`.

  You can use one of the following typedefs for common character types:

  +---------+----------------------+
  | Type    | Definition           |
  +=========+======================+
  | Writer  | BasicWriter<char>    |
  +---------+----------------------+
  | WWriter | BasicWriter<wchar_t> |
  +---------+----------------------+

  \endrst
 */
template <typename Char>
class BasicWriter {
 private:
  // Output buffer.
  Buffer<Char> &buffer_;

  FMT_DISALLOW_COPY_AND_ASSIGN(BasicWriter);

  typedef typename internal::CharTraits<Char>::CharPtr CharPtr;

#if FMT_SECURE_SCL
  // Returns pointer value.
  static Char *get(CharPtr p) { return p.base(); }
#else
  static Char *get(Char *p) { return p; }
#endif

  // Fills the padding around the content and returns the pointer to the
  // content area.
  static CharPtr fill_padding(CharPtr buffer,
      unsigned total_size, std::size_t content_size, wchar_t fill);

  // Grows the buffer by n characters and returns a pointer to the newly
  // allocated area.
  CharPtr grow_buffer(std::size_t n) {
    std::size_t size = buffer_.size();
    buffer_.resize(size + n);
    return internal::make_ptr(&buffer_[size], n);
  }

  // Writes an unsigned decimal integer.
  template <typename UInt>
  Char *write_unsigned_decimal(UInt value, unsigned prefix_size = 0) {
    unsigned num_digits = internal::count_digits(value);
    Char *ptr = get(grow_buffer(prefix_size + num_digits));
    internal::format_decimal(ptr + prefix_size, value, num_digits);
    return ptr;
  }

  // Writes a decimal integer.
  template <typename Int>
  void write_decimal(Int value) {
    typedef typename internal::IntTraits<Int>::MainType MainType;
    MainType abs_value = static_cast<MainType>(value);
    if (internal::is_negative(value)) {
      abs_value = 0 - abs_value;
      *write_unsigned_decimal(abs_value, 1) = '-';
    } else {
      write_unsigned_decimal(abs_value, 0);
    }
  }

  // Prepare a buffer for integer formatting.
  CharPtr prepare_int_buffer(unsigned num_digits,
      const EmptySpec &, const char *prefix, unsigned prefix_size) {
    unsigned size = prefix_size + num_digits;
    CharPtr p = grow_buffer(size);
    std::uninitialized_copy(prefix, prefix + prefix_size, p);
    return p + size - 1;
  }

  template <typename Spec>
  CharPtr prepare_int_buffer(unsigned num_digits,
    const Spec &spec, const char *prefix, unsigned prefix_size);

  // Formats an integer.
  template <typename T, typename Spec>
  void write_int(T value, Spec spec);

  // Formats a floating-point number (double or long double).
  template <typename T, typename Spec>
  void write_double(T value, const Spec &spec);

  // Writes a formatted string.
  template <typename StrChar>
  CharPtr write_str(const StrChar *s, std::size_t size, const AlignSpec &spec);

  template <typename StrChar, typename Spec>
  void write_str(const internal::Arg::StringValue<StrChar> &str,
                 const Spec &spec);

  // This following methods are private to disallow writing wide characters
  // and strings to a char stream. If you want to print a wide string as a
  // pointer as std::ostream does, cast it to const void*.
  // Do not implement!
  void operator<<(typename internal::WCharHelper<wchar_t, Char>::Unsupported);
  void operator<<(
      typename internal::WCharHelper<const wchar_t *, Char>::Unsupported);

  // Appends floating-point length specifier to the format string.
  // The second argument is only used for overload resolution.
  void append_float_length(Char *&format_ptr, long double) {
    *format_ptr++ = 'L';
  }

  template<typename T>
  void append_float_length(Char *&, T) {}

  template <typename Impl, typename Char_, typename Spec_>
  friend class internal::ArgFormatterBase;

  template <typename Impl, typename Char_, typename Spec_>
  friend class BasicPrintfArgFormatter;

 protected:
  /**
    Constructs a ``BasicWriter`` object.
   */
  explicit BasicWriter(Buffer<Char> &b) : buffer_(b) {}

 public:
  /**
    \rst
    Destroys a ``BasicWriter`` object.
    \endrst
   */
  virtual ~BasicWriter() {}

  /**
    Returns the total number of characters written.
   */
  std::size_t size() const { return buffer_.size(); }

  /**
    Returns a pointer to the output buffer content. No terminating null
    character is appended.
   */
  const Char *data() const FMT_NOEXCEPT { return &buffer_[0]; }

  /**
    Returns a pointer to the output buffer content with terminating null
    character appended.
   */
  const Char *c_str() const {
    std::size_t size = buffer_.size();
    buffer_.reserve(size + 1);
    buffer_[size] = '\0';
    return &buffer_[0];
  }

  /**
    \rst
    Returns the content of the output buffer as an `std::string`.
    \endrst
   */
  std::basic_string<Char> str() const {
    return std::basic_string<Char>(&buffer_[0], buffer_.size());
  }

  /**
    \rst
    Writes formatted data.

    *args* is an argument list representing arbitrary arguments.

    **Example**::

       MemoryWriter out;
       out.write("Current point:\n");
       out.write("({:+f}, {:+f})", -3.14, 3.14);

    This will write the following output to the ``out`` object:

    .. code-block:: none

       Current point:
       (-3.140000, +3.140000)

    The output can be accessed using :func:`data()`, :func:`c_str` or
    :func:`str` methods.

    See also :ref:`syntax`.
    \endrst
   */
  void write(BasicCStringRef<Char> format, ArgList args) {
    BasicFormatter<Char>(args, *this).format(format);
  }
  FMT_VARIADIC_VOID(write, BasicCStringRef<Char>)

  BasicWriter &operator<<(int value) {
    write_decimal(value);
    return *this;
  }
  BasicWriter &operator<<(unsigned value) {
    return *this << IntFormatSpec<unsigned>(value);
  }
  BasicWriter &operator<<(long value) {
    write_decimal(value);
    return *this;
  }
  BasicWriter &operator<<(unsigned long value) {
    return *this << IntFormatSpec<unsigned long>(value);
  }
  BasicWriter &operator<<(LongLong value) {
    write_decimal(value);
    return *this;
  }

  /**
    \rst
    Formats *value* and writes it to the stream.
    \endrst
   */
  BasicWriter &operator<<(ULongLong value) {
    return *this << IntFormatSpec<ULongLong>(value);
  }

  BasicWriter &operator<<(double value) {
    write_double(value, FormatSpec());
    return *this;
  }

  /**
    \rst
    Formats *value* using the general format for floating-point numbers
    (``'g'``) and writes it to the stream.
    \endrst
   */
  BasicWriter &operator<<(long double value) {
    write_double(value, FormatSpec());
    return *this;
  }

  /**
    Writes a character to the stream.
   */
  BasicWriter &operator<<(char value) {
    buffer_.push_back(value);
    return *this;
  }

  BasicWriter &operator<<(
      typename internal::WCharHelper<wchar_t, Char>::Supported value) {
    buffer_.push_back(value);
    return *this;
  }

  /**
    \rst
    Writes *value* to the stream.
    \endrst
   */
  BasicWriter &operator<<(fmt::BasicStringRef<Char> value) {
    const Char *str = value.data();
    buffer_.append(str, str + value.size());
    return *this;
  }

  BasicWriter &operator<<(
      typename internal::WCharHelper<StringRef, Char>::Supported value) {
    const char *str = value.data();
    buffer_.append(str, str + value.size());
    return *this;
  }

  template <typename T, typename Spec, typename FillChar>
  BasicWriter &operator<<(IntFormatSpec<T, Spec, FillChar> spec) {
    internal::CharTraits<Char>::convert(FillChar());
    write_int(spec.value(), spec);
    return *this;
  }

  template <typename StrChar>
  BasicWriter &operator<<(const StrFormatSpec<StrChar> &spec) {
    const StrChar *s = spec.str();
    write_str(s, std::char_traits<Char>::length(s), spec);
    return *this;
  }

  void clear() FMT_NOEXCEPT { buffer_.clear(); }

  Buffer<Char> &buffer() FMT_NOEXCEPT { return buffer_; }
};

template <typename Char>
template <typename StrChar>
typename BasicWriter<Char>::CharPtr BasicWriter<Char>::write_str(
      const StrChar *s, std::size_t size, const AlignSpec &spec) {
  CharPtr out = CharPtr();
  if (spec.width() > size) {
    out = grow_buffer(spec.width());
    Char fill = internal::CharTraits<Char>::cast(spec.fill());
    if (spec.align() == ALIGN_RIGHT) {
      std::uninitialized_fill_n(out, spec.width() - size, fill);
      out += spec.width() - size;
    } else if (spec.align() == ALIGN_CENTER) {
      out = fill_padding(out, spec.width(), size, fill);
    } else {
      std::uninitialized_fill_n(out + size, spec.width() - size, fill);
    }
  } else {
    out = grow_buffer(size);
  }
  std::uninitialized_copy(s, s + size, out);
  return out;
}

template <typename Char>
template <typename StrChar, typename Spec>
void BasicWriter<Char>::write_str(
    const internal::Arg::StringValue<StrChar> &s, const Spec &spec) {
  // Check if StrChar is convertible to Char.
  internal::CharTraits<Char>::convert(StrChar());
  if (spec.type_ && spec.type_ != 's')
    internal::report_unknown_type(spec.type_, "string");
  const StrChar *str_value = s.value;
  std::size_t str_size = s.size;
  if (str_size == 0) {
    if (!str_value) {
      FMT_THROW(FormatError("string pointer is null"));
    }
  }
  std::size_t precision = static_cast<std::size_t>(spec.precision_);
  if (spec.precision_ >= 0 && precision < str_size)
    str_size = precision;
  write_str(str_value, str_size, spec);
}

template <typename Char>
typename BasicWriter<Char>::CharPtr
  BasicWriter<Char>::fill_padding(
    CharPtr buffer, unsigned total_size,
    std::size_t content_size, wchar_t fill) {
  std::size_t padding = total_size - content_size;
  std::size_t left_padding = padding / 2;
  Char fill_char = internal::CharTraits<Char>::cast(fill);
  std::uninitialized_fill_n(buffer, left_padding, fill_char);
  buffer += left_padding;
  CharPtr content = buffer;
  std::uninitialized_fill_n(buffer + content_size,
                            padding - left_padding, fill_char);
  return content;
}

template <typename Char>
template <typename Spec>
typename BasicWriter<Char>::CharPtr
  BasicWriter<Char>::prepare_int_buffer(
    unsigned num_digits, const Spec &spec,
    const char *prefix, unsigned prefix_size) {
  unsigned width = spec.width();
  Alignment align = spec.align();
  Char fill = internal::CharTraits<Char>::cast(spec.fill());
  if (spec.precision() > static_cast<int>(num_digits)) {
    // Octal prefix '0' is counted as a digit, so ignore it if precision
    // is specified.
    if (prefix_size > 0 && prefix[prefix_size - 1] == '0')
      --prefix_size;
    unsigned number_size =
        prefix_size + internal::to_unsigned(spec.precision());
    AlignSpec subspec(number_size, '0', ALIGN_NUMERIC);
    if (number_size >= width)
      return prepare_int_buffer(num_digits, subspec, prefix, prefix_size);
    buffer_.reserve(width);
    unsigned fill_size = width - number_size;
    if (align != ALIGN_LEFT) {
      CharPtr p = grow_buffer(fill_size);
      std::uninitialized_fill(p, p + fill_size, fill);
    }
    CharPtr result = prepare_int_buffer(
        num_digits, subspec, prefix, prefix_size);
    if (align == ALIGN_LEFT) {
      CharPtr p = grow_buffer(fill_size);
      std::uninitialized_fill(p, p + fill_size, fill);
    }
    return result;
  }
  unsigned size = prefix_size + num_digits;
  if (width <= size) {
    CharPtr p = grow_buffer(size);
    std::uninitialized_copy(prefix, prefix + prefix_size, p);
    return p + size - 1;
  }
  CharPtr p = grow_buffer(width);
  CharPtr end = p + width;
  if (align == ALIGN_LEFT) {
    std::uninitialized_copy(prefix, prefix + prefix_size, p);
    p += size;
    std::uninitialized_fill(p, end, fill);
  } else if (align == ALIGN_CENTER) {
    p = fill_padding(p, width, size, fill);
    std::uninitialized_copy(prefix, prefix + prefix_size, p);
    p += size;
  } else {
    if (align == ALIGN_NUMERIC) {
      if (prefix_size != 0) {
        p = std::uninitialized_copy(prefix, prefix + prefix_size, p);
        size -= prefix_size;
      }
    } else {
      std::uninitialized_copy(prefix, prefix + prefix_size, end - size);
    }
    std::uninitialized_fill(p, end - size, fill);
    p = end;
  }
  return p - 1;
}

template <typename Char>
template <typename T, typename Spec>
void BasicWriter<Char>::write_int(T value, Spec spec) {
  unsigned prefix_size = 0;
  typedef typename internal::IntTraits<T>::MainType UnsignedType;
  UnsignedType abs_value = static_cast<UnsignedType>(value);
  char prefix[4] = "";
  if (internal::is_negative(value)) {
    prefix[0] = '-';
    ++prefix_size;
    abs_value = 0 - abs_value;
  } else if (spec.flag(SIGN_FLAG)) {
    prefix[0] = spec.flag(PLUS_FLAG) ? '+' : ' ';
    ++prefix_size;
  }
  switch (spec.type()) {
  case 0: case 'd': {
    unsigned num_digits = internal::count_digits(abs_value);
    CharPtr p = prepare_int_buffer(num_digits, spec, prefix, prefix_size) + 1;
    internal::format_decimal(get(p), abs_value, 0);
    break;
  }
  case 'x': case 'X': {
    UnsignedType n = abs_value;
    if (spec.flag(HASH_FLAG)) {
      prefix[prefix_size++] = '0';
      prefix[prefix_size++] = spec.type_prefix();
    }
    unsigned num_digits = 0;
    do {
      ++num_digits;
    } while ((n >>= 4) != 0);
    Char *p = get(prepare_int_buffer(
      num_digits, spec, prefix, prefix_size));
    n = abs_value;
    const char *digits = spec.type() == 'x' ?
        "0123456789abcdef" : "0123456789ABCDEF";
    do {
      *p-- = digits[n & 0xf];
    } while ((n >>= 4) != 0);
    break;
  }
  case 'b': case 'B': {
    UnsignedType n = abs_value;
    if (spec.flag(HASH_FLAG)) {
      prefix[prefix_size++] = '0';
      prefix[prefix_size++] = spec.type_prefix();
    }
    unsigned num_digits = 0;
    do {
      ++num_digits;
    } while ((n >>= 1) != 0);
    Char *p = get(prepare_int_buffer(num_digits, spec, prefix, prefix_size));
    n = abs_value;
    do {
      *p-- = static_cast<Char>('0' + (n & 1));
    } while ((n >>= 1) != 0);
    break;
  }
  case 'o': {
    UnsignedType n = abs_value;
    if (spec.flag(HASH_FLAG))
      prefix[prefix_size++] = '0';
    unsigned num_digits = 0;
    do {
      ++num_digits;
    } while ((n >>= 3) != 0);
    Char *p = get(prepare_int_buffer(num_digits, spec, prefix, prefix_size));
    n = abs_value;
    do {
      *p-- = static_cast<Char>('0' + (n & 7));
    } while ((n >>= 3) != 0);
    break;
  }
  case 'n': {
    unsigned num_digits = internal::count_digits(abs_value);
    fmt::StringRef sep = "";
#if !(defined(ANDROID) || defined(__ANDROID__))
    sep = internal::thousands_sep(std::localeconv());
#endif
    unsigned size = static_cast<unsigned>(
          num_digits + sep.size() * ((num_digits - 1) / 3));
    CharPtr p = prepare_int_buffer(size, spec, prefix, prefix_size) + 1;
    internal::format_decimal(get(p), abs_value, 0, internal::ThousandsSep(sep));
    break;
  }
  default:
    internal::report_unknown_type(
      spec.type(), spec.flag(CHAR_FLAG) ? "char" : "integer");
    break;
  }
}

template <typename Char>
template <typename T, typename Spec>
void BasicWriter<Char>::write_double(T value, const Spec &spec) {
  // Check type.
  char type = spec.type();
  bool upper = false;
  switch (type) {
  case 0:
    type = 'g';
    break;
  case 'e': case 'f': case 'g': case 'a':
    break;
  case 'F':
#if FMT_MSC_VER
    // MSVC's printf doesn't support 'F'.
    type = 'f';
#endif
    // Fall through.
  case 'E': case 'G': case 'A':
    upper = true;
    break;
  default:
    internal::report_unknown_type(type, "double");
    break;
  }

  char sign = 0;
  // Use isnegative instead of value < 0 because the latter is always
  // false for NaN.
  if (internal::FPUtil::isnegative(static_cast<double>(value))) {
    sign = '-';
    value = -value;
  } else if (spec.flag(SIGN_FLAG)) {
    sign = spec.flag(PLUS_FLAG) ? '+' : ' ';
  }

  if (internal::FPUtil::isnotanumber(value)) {
    // Format NaN ourselves because sprintf's output is not consistent
    // across platforms.
    std::size_t nan_size = 4;
    const char *nan = upper ? " NAN" : " nan";
    if (!sign) {
      --nan_size;
      ++nan;
    }
    CharPtr out = write_str(nan, nan_size, spec);
    if (sign)
      *out = sign;
    return;
  }

  if (internal::FPUtil::isinfinity(value)) {
    // Format infinity ourselves because sprintf's output is not consistent
    // across platforms.
    std::size_t inf_size = 4;
    const char *inf = upper ? " INF" : " inf";
    if (!sign) {
      --inf_size;
      ++inf;
    }
    CharPtr out = write_str(inf, inf_size, spec);
    if (sign)
      *out = sign;
    return;
  }

  std::size_t offset = buffer_.size();
  unsigned width = spec.width();
  if (sign) {
    buffer_.reserve(buffer_.size() + (width > 1u ? width : 1u));
    if (width > 0)
      --width;
    ++offset;
  }

  // Build format string.
  enum { MAX_FORMAT_SIZE = 10}; // longest format: %#-*.*Lg
  Char format[MAX_FORMAT_SIZE];
  Char *format_ptr = format;
  *format_ptr++ = '%';
  unsigned width_for_sprintf = width;
  if (spec.flag(HASH_FLAG))
    *format_ptr++ = '#';
  if (spec.align() == ALIGN_CENTER) {
    width_for_sprintf = 0;
  } else {
    if (spec.align() == ALIGN_LEFT)
      *format_ptr++ = '-';
    if (width != 0)
      *format_ptr++ = '*';
  }
  if (spec.precision() >= 0) {
    *format_ptr++ = '.';
    *format_ptr++ = '*';
  }

  append_float_length(format_ptr, value);
  *format_ptr++ = type;
  *format_ptr = '\0';

  // Format using snprintf.
  Char fill = internal::CharTraits<Char>::cast(spec.fill());
  unsigned n = 0;
  Char *start = FMT_NULL;
  for (;;) {
    std::size_t buffer_size = buffer_.capacity() - offset;
#if FMT_MSC_VER
    // MSVC's vsnprintf_s doesn't work with zero size, so reserve
    // space for at least one extra character to make the size non-zero.
    // Note that the buffer's capacity will increase by more than 1.
    if (buffer_size == 0) {
      buffer_.reserve(offset + 1);
      buffer_size = buffer_.capacity() - offset;
    }
#endif
    start = &buffer_[offset];
    int result = internal::CharTraits<Char>::format_float(
        start, buffer_size, format, width_for_sprintf, spec.precision(), value);
    if (result >= 0) {
      n = internal::to_unsigned(result);
      if (offset + n < buffer_.capacity())
        break;  // The buffer is large enough - continue with formatting.
      buffer_.reserve(offset + n + 1);
    } else {
      // If result is negative we ask to increase the capacity by at least 1,
      // but as std::vector, the buffer grows exponentially.
      buffer_.reserve(buffer_.capacity() + 1);
    }
  }
  if (sign) {
    if ((spec.align() != ALIGN_RIGHT && spec.align() != ALIGN_DEFAULT) ||
        *start != ' ') {
      *(start - 1) = sign;
      sign = 0;
    } else {
      *(start - 1) = fill;
    }
    ++n;
  }
  if (spec.align() == ALIGN_CENTER && spec.width() > n) {
    width = spec.width();
    CharPtr p = grow_buffer(width);
    std::memmove(get(p) + (width - n) / 2, get(p), n * sizeof(Char));
    fill_padding(p, spec.width(), n, fill);
    return;
  }
  if (spec.fill() != ' ' || sign) {
    while (*start == ' ')
      *start++ = fill;
    if (sign)
      *(start - 1) = sign;
  }
  grow_buffer(n);
}

/**
  \rst
  This class template provides operations for formatting and writing data
  into a character stream. The output is stored in a memory buffer that grows
  dynamically.

  You can use one of the following typedefs for common character types
  and the standard allocator:

  +---------------+-----------------------------------------------------+
  | Type          | Definition                                          |
  +===============+=====================================================+
  | MemoryWriter  | BasicMemoryWriter<char, std::allocator<char>>       |
  +---------------+-----------------------------------------------------+
  | WMemoryWriter | BasicMemoryWriter<wchar_t, std::allocator<wchar_t>> |
  +---------------+-----------------------------------------------------+

  **Example**::

     MemoryWriter out;
     out << "The answer is " << 42 << "\n";
     out.write("({:+f}, {:+f})", -3.14, 3.14);

  This will write the following output to the ``out`` object:

  .. code-block:: none

     The answer is 42
     (-3.140000, +3.140000)

  The output can be converted to an ``std::string`` with ``out.str()`` or
  accessed as a C string with ``out.c_str()``.
  \endrst
 */
template <typename Char, typename Allocator = std::allocator<Char> >
class BasicMemoryWriter : public BasicWriter<Char> {
 private:
  internal::MemoryBuffer<Char, internal::INLINE_BUFFER_SIZE, Allocator> buffer_;

 public:
  explicit BasicMemoryWriter(const Allocator& alloc = Allocator())
    : BasicWriter<Char>(buffer_), buffer_(alloc) {}

#if FMT_USE_RVALUE_REFERENCES
  /**
    \rst
    Constructs a :class:`fmt::BasicMemoryWriter` object moving the content
    of the other object to it.
    \endrst
   */
  BasicMemoryWriter(BasicMemoryWriter &&other)
    : BasicWriter<Char>(buffer_), buffer_(std::move(other.buffer_)) {
  }

  /**
    \rst
    Moves the content of the other ``BasicMemoryWriter`` object to this one.
    \endrst
   */
  BasicMemoryWriter &operator=(BasicMemoryWriter &&other) {
    buffer_ = std::move(other.buffer_);
    return *this;
  }
#endif
};

typedef BasicMemoryWriter<char> MemoryWriter;
typedef BasicMemoryWriter<wchar_t> WMemoryWriter;

/**
  \rst
  This class template provides operations for formatting and writing data
  into a fixed-size array. For writing into a dynamically growing buffer
  use :class:`fmt::BasicMemoryWriter`.

  Any write method will throw ``std::runtime_error`` if the output doesn't fit
  into the array.

  You can use one of the following typedefs for common character types:

  +--------------+---------------------------+
  | Type         | Definition                |
  +==============+===========================+
  | ArrayWriter  | BasicArrayWriter<char>    |
  +--------------+---------------------------+
  | WArrayWriter | BasicArrayWriter<wchar_t> |
  +--------------+---------------------------+
  \endrst
 */
template <typename Char>
class BasicArrayWriter : public BasicWriter<Char> {
 private:
  internal::FixedBuffer<Char> buffer_;

 public:
  /**
   \rst
   Constructs a :class:`fmt::BasicArrayWriter` object for *array* of the
   given size.
   \endrst
   */
  BasicArrayWriter(Char *array, std::size_t size)
    : BasicWriter<Char>(buffer_), buffer_(array, size) {}

  /**
   \rst
   Constructs a :class:`fmt::BasicArrayWriter` object for *array* of the
   size known at compile time.
   \endrst
   */
  template <std::size_t SIZE>
  explicit BasicArrayWriter(Char (&array)[SIZE])
    : BasicWriter<Char>(buffer_), buffer_(array, SIZE) {}
};

typedef BasicArrayWriter<char> ArrayWriter;
typedef BasicArrayWriter<wchar_t> WArrayWriter;

// Reports a system error without throwing an exception.
// Can be used to report errors from destructors.
FMT_API void report_system_error(int error_code,
                                 StringRef message) FMT_NOEXCEPT;

#if FMT_USE_WINDOWS_H

/** A Windows error. */
class WindowsError : public SystemError {
 private:
  FMT_API void init(int error_code, CStringRef format_str, ArgList args);

 public:
  /**
   \rst
   Constructs a :class:`fmt::WindowsError` object with the description
   of the form

   .. parsed-literal::
     *<message>*: *<system-message>*

   where *<message>* is the formatted message and *<system-message>* is the
   system message corresponding to the error code.
   *error_code* is a Windows error code as given by ``GetLastError``.
   If *error_code* is not a valid error code such as -1, the system message
   will look like "error -1".

   **Example**::

     // This throws a WindowsError with the description
     //   cannot open file 'madeup': The system cannot find the file specified.
     // or similar (system message may vary).
     const char *filename = "madeup";
     LPOFSTRUCT of = LPOFSTRUCT();
     HFILE file = OpenFile(filename, &of, OF_READ);
     if (file == HFILE_ERROR) {
       throw fmt::WindowsError(GetLastError(),
                               "cannot open file '{}'", filename);
     }
   \endrst
  */
  WindowsError(int error_code, CStringRef message) {
    init(error_code, message, ArgList());
  }
  FMT_VARIADIC_CTOR(WindowsError, init, int, CStringRef)
};

// Reports a Windows error without throwing an exception.
// Can be used to report errors from destructors.
FMT_API void report_windows_error(int error_code,
                                  StringRef message) FMT_NOEXCEPT;

#endif

enum Color { BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE };

/**
  Formats a string and prints it to stdout using ANSI escape sequences
  to specify color (experimental).
  Example:
    print_colored(fmt::RED, "Elapsed time: {0:.2f} seconds", 1.23);
 */
FMT_API void print_colored(Color c, CStringRef format, ArgList args);

/**
  \rst
  Formats arguments and returns the result as a string.

  **Example**::

    std::string message = format("The answer is {}", 42);
  \endrst
*/
inline std::string format(CStringRef format_str, ArgList args) {
  MemoryWriter w;
  w.write(format_str, args);
  return w.str();
}

inline std::wstring format(WCStringRef format_str, ArgList args) {
  WMemoryWriter w;
  w.write(format_str, args);
  return w.str();
}

/**
  \rst
  Prints formatted data to the file *f*.

  **Example**::

    print(stderr, "Don't {}!", "panic");
  \endrst
 */
FMT_API void print(std::FILE *f, CStringRef format_str, ArgList args);

/**
  \rst
  Prints formatted data to ``stdout``.

  **Example**::

    print("Elapsed time: {0:.2f} seconds", 1.23);
  \endrst
 */
FMT_API void print(CStringRef format_str, ArgList args);

/**
  Fast integer formatter.
 */
class FormatInt {
 private:
  // Buffer should be large enough to hold all digits (digits10 + 1),
  // a sign and a null character.
  enum {BUFFER_SIZE = std::numeric_limits<ULongLong>::digits10 + 3};
  mutable char buffer_[BUFFER_SIZE];
  char *str_;

  // Formats value in reverse and returns the number of digits.
  char *format_decimal(ULongLong value) {
    char *buffer_end = buffer_ + BUFFER_SIZE - 1;
    while (value >= 100) {
      // Integer division is slow so do it for a group of two digits instead
      // of for every digit. The idea comes from the talk by Alexandrescu
      // "Three Optimization Tips for C++". See speed-test for a comparison.
      unsigned index = static_cast<unsigned>((value % 100) * 2);
      value /= 100;
      *--buffer_end = internal::Data::DIGITS[index + 1];
      *--buffer_end = internal::Data::DIGITS[index];
    }
    if (value < 10) {
      *--buffer_end = static_cast<char>('0' + value);
      return buffer_end;
    }
    unsigned index = static_cast<unsigned>(value * 2);
    *--buffer_end = internal::Data::DIGITS[index + 1];
    *--buffer_end = internal::Data::DIGITS[index];
    return buffer_end;
  }

  void FormatSigned(LongLong value) {
    ULongLong abs_value = static_cast<ULongLong>(value);
    bool negative = value < 0;
    if (negative)
      abs_value = 0 - abs_value;
    str_ = format_decimal(abs_value);
    if (negative)
      *--str_ = '-';
  }

 public:
  explicit FormatInt(int value) { FormatSigned(value); }
  explicit FormatInt(long value) { FormatSigned(value); }
  explicit FormatInt(LongLong value) { FormatSigned(value); }
  explicit FormatInt(unsigned value) : str_(format_decimal(value)) {}
  explicit FormatInt(unsigned long value) : str_(format_decimal(value)) {}
  explicit FormatInt(ULongLong value) : str_(format_decimal(value)) {}

  /** Returns the number of characters written to the output buffer. */
  std::size_t size() const {
    return internal::to_unsigned(buffer_ - str_ + BUFFER_SIZE - 1);
  }

  /**
    Returns a pointer to the output buffer content. No terminating null
    character is appended.
   */
  const char *data() const { return str_; }

  /**
    Returns a pointer to the output buffer content with terminating null
    character appended.
   */
  const char *c_str() const {
    buffer_[BUFFER_SIZE - 1] = '\0';
    return str_;
  }

  /**
    \rst
    Returns the content of the output buffer as an ``std::string``.
    \endrst
   */
  std::string str() const { return std::string(str_, size()); }
};

// Formats a decimal integer value writing into buffer and returns
// a pointer to the end of the formatted string. This function doesn't
// write a terminating null character.
template <typename T>
inline void format_decimal(char *&buffer, T value) {
  typedef typename internal::IntTraits<T>::MainType MainType;
  MainType abs_value = static_cast<MainType>(value);
  if (internal::is_negative(value)) {
    *buffer++ = '-';
    abs_value = 0 - abs_value;
  }
  if (abs_value < 100) {
    if (abs_value < 10) {
      *buffer++ = static_cast<char>('0' + abs_value);
      return;
    }
    unsigned index = static_cast<unsigned>(abs_value * 2);
    *buffer++ = internal::Data::DIGITS[index];
    *buffer++ = internal::Data::DIGITS[index + 1];
    return;
  }
  unsigned num_digits = internal::count_digits(abs_value);
  internal::format_decimal(buffer, abs_value, num_digits);
  buffer += num_digits;
}

/**
  \rst
  Returns a named argument for formatting functions.

  **Example**::

    print("Elapsed time: {s:.2f} seconds", arg("s", 1.23));

  \endrst
 */
template <typename T>
inline internal::NamedArgWithType<char, T> arg(StringRef name, const T &arg) {
  return internal::NamedArgWithType<char, T>(name, arg);
}

template <typename T>
inline internal::NamedArgWithType<wchar_t, T> arg(WStringRef name, const T &arg) {
  return internal::NamedArgWithType<wchar_t, T>(name, arg);
}

// The following two functions are deleted intentionally to disable
// nested named arguments as in ``format("{}", arg("a", arg("b", 42)))``.
template <typename Char>
void arg(StringRef, const internal::NamedArg<Char>&) FMT_DELETED_OR_UNDEFINED;
template <typename Char>
void arg(WStringRef, const internal::NamedArg<Char>&) FMT_DELETED_OR_UNDEFINED;
}

#if FMT_GCC_VERSION
// Use the system_header pragma to suppress warnings about variadic macros
// because suppressing -Wvariadic-macros with the diagnostic pragma doesn't
// work. It is used at the end because we want to suppress as little warnings
// as possible.
# pragma GCC system_header
#endif

// This is used to work around VC++ bugs in handling variadic macros.
#define FMT_EXPAND(args) args

// Returns the number of arguments.
// Based on https://groups.google.com/forum/#!topic/comp.std.c/d-6Mj5Lko_s.
#define FMT_NARG(...) FMT_NARG_(__VA_ARGS__, FMT_RSEQ_N())
#define FMT_NARG_(...) FMT_EXPAND(FMT_ARG_N(__VA_ARGS__))
#define FMT_ARG_N(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, N, ...) N
#define FMT_RSEQ_N() 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0

#define FMT_FOR_EACH_(N, f, ...) \
  FMT_EXPAND(FMT_CONCAT(FMT_FOR_EACH, N)(f, __VA_ARGS__))
#define FMT_FOR_EACH(f, ...) \
  FMT_EXPAND(FMT_FOR_EACH_(FMT_NARG(__VA_ARGS__), f, __VA_ARGS__))

#define FMT_ADD_ARG_NAME(type, index) type arg##index
#define FMT_GET_ARG_NAME(type, index) arg##index

#if FMT_USE_VARIADIC_TEMPLATES
# define FMT_VARIADIC_(Const, Char, ReturnType, func, call, ...) \
  template <typename... Args> \
  ReturnType func(FMT_FOR_EACH(FMT_ADD_ARG_NAME, __VA_ARGS__), \
      const Args & ... args) Const { \
    typedef fmt::internal::ArgArray<sizeof...(Args)> ArgArray; \
    typename ArgArray::Type array{ \
      ArgArray::template make<fmt::BasicFormatter<Char> >(args)...}; \
    call(FMT_FOR_EACH(FMT_GET_ARG_NAME, __VA_ARGS__), \
      fmt::ArgList(fmt::internal::make_type(args...), array)); \
  }
#else
// Defines a wrapper for a function taking __VA_ARGS__ arguments
// and n additional arguments of arbitrary types.
# define FMT_WRAP(Const, Char, ReturnType, func, call, n, ...) \
  template <FMT_GEN(n, FMT_MAKE_TEMPLATE_ARG)> \
  inline ReturnType func(FMT_FOR_EACH(FMT_ADD_ARG_NAME, __VA_ARGS__), \
      FMT_GEN(n, FMT_MAKE_ARG)) Const { \
    fmt::internal::ArgArray<n>::Type arr; \
    FMT_GEN(n, FMT_ASSIGN_##Char); \
    call(FMT_FOR_EACH(FMT_GET_ARG_NAME, __VA_ARGS__), fmt::ArgList( \
      fmt::internal::make_type(FMT_GEN(n, FMT_MAKE_REF2)), arr)); \
  }

# define FMT_VARIADIC_(Const, Char, ReturnType, func, call, ...) \
  inline ReturnType func(FMT_FOR_EACH(FMT_ADD_ARG_NAME, __VA_ARGS__)) Const { \
    call(FMT_FOR_EACH(FMT_GET_ARG_NAME, __VA_ARGS__), fmt::ArgList()); \
  } \
  FMT_WRAP(Const, Char, ReturnType, func, call, 1, __VA_ARGS__) \
  FMT_WRAP(Const, Char, ReturnType, func, call, 2, __VA_ARGS__) \
  FMT_WRAP(Const, Char, ReturnType, func, call, 3, __VA_ARGS__) \
  FMT_WRAP(Const, Char, ReturnType, func, call, 4, __VA_ARGS__) \
  FMT_WRAP(Const, Char, ReturnType, func, call, 5, __VA_ARGS__) \
  FMT_WRAP(Const, Char, ReturnType, func, call, 6, __VA_ARGS__) \
  FMT_WRAP(Const, Char, ReturnType, func, call, 7, __VA_ARGS__) \
  FMT_WRAP(Const, Char, ReturnType, func, call, 8, __VA_ARGS__) \
  FMT_WRAP(Const, Char, ReturnType, func, call, 9, __VA_ARGS__) \
  FMT_WRAP(Const, Char, ReturnType, func, call, 10, __VA_ARGS__) \
  FMT_WRAP(Const, Char, ReturnType, func, call, 11, __VA_ARGS__) \
  FMT_WRAP(Const, Char, ReturnType, func, call, 12, __VA_ARGS__) \
  FMT_WRAP(Const, Char, ReturnType, func, call, 13, __VA_ARGS__) \
  FMT_WRAP(Const, Char, ReturnType, func, call, 14, __VA_ARGS__) \
  FMT_WRAP(Const, Char, ReturnType, func, call, 15, __VA_ARGS__)
#endif  // FMT_USE_VARIADIC_TEMPLATES

/**
  \rst
  Defines a variadic function with the specified return type, function name
  and argument types passed as variable arguments to this macro.

  **Example**::

    void print_error(const char *file, int line, const char *format,
                     fmt::ArgList args) {
      fmt::print("{}: {}: ", file, line);
      fmt::print(format, args);
    }
    FMT_VARIADIC(void, print_error, const char *, int, const char *)

  ``FMT_VARIADIC`` is used for compatibility with legacy C++ compilers that
  don't implement variadic templates. You don't have to use this macro if
  you don't need legacy compiler support and can use variadic templates
  directly::

    template <typename... Args>
    void print_error(const char *file, int line, const char *format,
                     const Args & ... args) {
      fmt::print("{}: {}: ", file, line);
      fmt::print(format, args...);
    }
  \endrst
 */
#define FMT_VARIADIC(ReturnType, func, ...) \
  FMT_VARIADIC_(, char, ReturnType, func, return func, __VA_ARGS__)

#define FMT_VARIADIC_CONST(ReturnType, func, ...) \
  FMT_VARIADIC_(const, char, ReturnType, func, return func, __VA_ARGS__)

#define FMT_VARIADIC_W(ReturnType, func, ...) \
  FMT_VARIADIC_(, wchar_t, ReturnType, func, return func, __VA_ARGS__)

#define FMT_VARIADIC_CONST_W(ReturnType, func, ...) \
  FMT_VARIADIC_(const, wchar_t, ReturnType, func, return func, __VA_ARGS__)

#define FMT_CAPTURE_ARG_(id, index) ::fmt::arg(#id, id)

#define FMT_CAPTURE_ARG_W_(id, index) ::fmt::arg(L###id, id)

/**
  \rst
  Convenient macro to capture the arguments' names and values into several
  ``fmt::arg(name, value)``.

  **Example**::

    int x = 1, y = 2;
    print("point: ({x}, {y})", FMT_CAPTURE(x, y));
    // same as:
    // print("point: ({x}, {y})", arg("x", x), arg("y", y));

  \endrst
 */
#define FMT_CAPTURE(...) FMT_FOR_EACH(FMT_CAPTURE_ARG_, __VA_ARGS__)

#define FMT_CAPTURE_W(...) FMT_FOR_EACH(FMT_CAPTURE_ARG_W_, __VA_ARGS__)

namespace fmt {
FMT_VARIADIC(std::string, format, CStringRef)
FMT_VARIADIC_W(std::wstring, format, WCStringRef)
FMT_VARIADIC(void, print, CStringRef)
FMT_VARIADIC(void, print, std::FILE *, CStringRef)
FMT_VARIADIC(void, print_colored, Color, CStringRef)

namespace internal {
template <typename Char>
inline bool is_name_start(Char c) {
  return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || '_' == c;
}

// Parses an unsigned integer advancing s to the end of the parsed input.
// This function assumes that the first character of s is a digit.
template <typename Char>
unsigned parse_nonnegative_int(const Char *&s) {
  assert('0' <= *s && *s <= '9');
  unsigned value = 0;
  // Convert to unsigned to prevent a warning.
  unsigned max_int = (std::numeric_limits<int>::max)();
  unsigned big = max_int / 10;
  do {
    // Check for overflow.
    if (value > big) {
      value = max_int + 1;
      break;
    }
    value = value * 10 + (*s - '0');
    ++s;
  } while ('0' <= *s && *s <= '9');
  // Convert to unsigned to prevent a warning.
  if (value > max_int)
    FMT_THROW(FormatError("number is too big"));
  return value;
}

inline void require_numeric_argument(const Arg &arg, char spec) {
  if (arg.type > Arg::LAST_NUMERIC_TYPE) {
    std::string message =
        fmt::format("format specifier '{}' requires numeric argument", spec);
    FMT_THROW(fmt::FormatError(message));
  }
}

template <typename Char>
void check_sign(const Char *&s, const Arg &arg) {
  char sign = static_cast<char>(*s);
  require_numeric_argument(arg, sign);
  if (arg.type == Arg::UINT || arg.type == Arg::ULONG_LONG) {
    FMT_THROW(FormatError(fmt::format(
      "format specifier '{}' requires signed argument", sign)));
  }
  ++s;
}
}  // namespace internal

template <typename Char, typename AF>
inline internal::Arg BasicFormatter<Char, AF>::get_arg(
    BasicStringRef<Char> arg_name, const char *&error) {
  if (check_no_auto_index(error)) {
    map_.init(args());
    const internal::Arg *arg = map_.find(arg_name);
    if (arg)
      return *arg;
    error = "argument not found";
  }
  return internal::Arg();
}

template <typename Char, typename AF>
inline internal::Arg BasicFormatter<Char, AF>::parse_arg_index(const Char *&s) {
  const char *error = FMT_NULL;
  internal::Arg arg = *s < '0' || *s > '9' ?
        next_arg(error) : get_arg(internal::parse_nonnegative_int(s), error);
  if (error) {
    FMT_THROW(FormatError(
                *s != '}' && *s != ':' ? "invalid format string" : error));
  }
  return arg;
}

template <typename Char, typename AF>
inline internal::Arg BasicFormatter<Char, AF>::parse_arg_name(const Char *&s) {
  assert(internal::is_name_start(*s));
  const Char *start = s;
  Char c;
  do {
    c = *++s;
  } while (internal::is_name_start(c) || ('0' <= c && c <= '9'));
  const char *error = FMT_NULL;
  internal::Arg arg = get_arg(BasicStringRef<Char>(start, s - start), error);
  if (error)
    FMT_THROW(FormatError(error));
  return arg;
}

template <typename Char, typename ArgFormatter>
const Char *BasicFormatter<Char, ArgFormatter>::format(
    const Char *&format_str, const internal::Arg &arg) {
  using internal::Arg;
  const Char *s = format_str;
  typename ArgFormatter::SpecType spec;
  if (*s == ':') {
    if (arg.type == Arg::CUSTOM) {
      arg.custom.format(this, arg.custom.value, &s);
      return s;
    }
    ++s;
    // Parse fill and alignment.
    if (Char c = *s) {
      const Char *p = s + 1;
      spec.align_ = ALIGN_DEFAULT;
      do {
        switch (*p) {
          case '<':
            spec.align_ = ALIGN_LEFT;
            break;
          case '>':
            spec.align_ = ALIGN_RIGHT;
            break;
          case '=':
            spec.align_ = ALIGN_NUMERIC;
            break;
          case '^':
            spec.align_ = ALIGN_CENTER;
            break;
        }
        if (spec.align_ != ALIGN_DEFAULT) {
          if (p != s) {
            if (c == '}') break;
            if (c == '{')
              FMT_THROW(FormatError("invalid fill character '{'"));
            s += 2;
            spec.fill_ = c;
          } else ++s;
          if (spec.align_ == ALIGN_NUMERIC)
            require_numeric_argument(arg, '=');
          break;
        }
      } while (--p >= s);
    }

    // Parse sign.
    switch (*s) {
      case '+':
        check_sign(s, arg);
        spec.flags_ |= SIGN_FLAG | PLUS_FLAG;
        break;
      case '-':
        check_sign(s, arg);
        spec.flags_ |= MINUS_FLAG;
        break;
      case ' ':
        check_sign(s, arg);
        spec.flags_ |= SIGN_FLAG;
        break;
    }

    if (*s == '#') {
      require_numeric_argument(arg, '#');
      spec.flags_ |= HASH_FLAG;
      ++s;
    }

    // Parse zero flag.
    if (*s == '0') {
      require_numeric_argument(arg, '0');
      spec.align_ = ALIGN_NUMERIC;
      spec.fill_ = '0';
      ++s;
    }

    // Parse width.
    if ('0' <= *s && *s <= '9') {
      spec.width_ = internal::parse_nonnegative_int(s);
    } else if (*s == '{') {
      ++s;
      Arg width_arg = internal::is_name_start(*s) ?
            parse_arg_name(s) : parse_arg_index(s);
      if (*s++ != '}')
        FMT_THROW(FormatError("invalid format string"));
      ULongLong value = 0;
      switch (width_arg.type) {
      case Arg::INT:
        if (width_arg.int_value < 0)
          FMT_THROW(FormatError("negative width"));
        value = width_arg.int_value;
        break;
      case Arg::UINT:
        value = width_arg.uint_value;
        break;
      case Arg::LONG_LONG:
        if (width_arg.long_long_value < 0)
          FMT_THROW(FormatError("negative width"));
        value = width_arg.long_long_value;
        break;
      case Arg::ULONG_LONG:
        value = width_arg.ulong_long_value;
        break;
      default:
        FMT_THROW(FormatError("width is not integer"));
      }
      unsigned max_int = (std::numeric_limits<int>::max)();
      if (value > max_int)
        FMT_THROW(FormatError("number is too big"));
      spec.width_ = static_cast<int>(value);
    }

    // Parse precision.
    if (*s == '.') {
      ++s;
      spec.precision_ = 0;
      if ('0' <= *s && *s <= '9') {
        spec.precision_ = internal::parse_nonnegative_int(s);
      } else if (*s == '{') {
        ++s;
        Arg precision_arg = internal::is_name_start(*s) ?
              parse_arg_name(s) : parse_arg_index(s);
        if (*s++ != '}')
          FMT_THROW(FormatError("invalid format string"));
        ULongLong value = 0;
        switch (precision_arg.type) {
          case Arg::INT:
            if (precision_arg.int_value < 0)
              FMT_THROW(FormatError("negative precision"));
            value = precision_arg.int_value;
            break;
          case Arg::UINT:
            value = precision_arg.uint_value;
            break;
          case Arg::LONG_LONG:
            if (precision_arg.long_long_value < 0)
              FMT_THROW(FormatError("negative precision"));
            value = precision_arg.long_long_value;
            break;
          case Arg::ULONG_LONG:
            value = precision_arg.ulong_long_value;
            break;
          default:
            FMT_THROW(FormatError("precision is not integer"));
        }
        unsigned max_int = (std::numeric_limits<int>::max)();
        if (value > max_int)
          FMT_THROW(FormatError("number is too big"));
        spec.precision_ = static_cast<int>(value);
      } else {
        FMT_THROW(FormatError("missing precision specifier"));
      }
      if (arg.type <= Arg::LAST_INTEGER_TYPE || arg.type == Arg::POINTER) {
        FMT_THROW(FormatError(
            fmt::format("precision not allowed in {} format specifier",
            arg.type == Arg::POINTER ? "pointer" : "integer")));
      }
    }

    // Parse type.
    if (*s != '}' && *s)
      spec.type_ = static_cast<char>(*s++);
  }

  if (*s++ != '}')
    FMT_THROW(FormatError("missing '}' in format string"));

  // Format argument.
  ArgFormatter(*this, spec, s - 1).visit(arg);
  return s;
}

template <typename Char, typename AF>
void BasicFormatter<Char, AF>::format(BasicCStringRef<Char> format_str) {
  const Char *s = format_str.c_str();
  const Char *start = s;
  while (*s) {
    Char c = *s++;
    if (c != '{' && c != '}') continue;
    if (*s == c) {
      write(writer_, start, s);
      start = ++s;
      continue;
    }
    if (c == '}')
      FMT_THROW(FormatError("unmatched '}' in format string"));
    write(writer_, start, s - 1);
    internal::Arg arg = internal::is_name_start(*s) ?
          parse_arg_name(s) : parse_arg_index(s);
    start = s = format(s, arg);
  }
  write(writer_, start, s);
}

template <typename Char, typename It>
struct ArgJoin {
  It first;
  It last;
  BasicCStringRef<Char> sep;

  ArgJoin(It first, It last, const BasicCStringRef<Char>& sep) :
    first(first),
    last(last),
    sep(sep) {}
};

template <typename It>
ArgJoin<char, It> join(It first, It last, const BasicCStringRef<char>& sep) {
  return ArgJoin<char, It>(first, last, sep);
}

template <typename It>
ArgJoin<wchar_t, It> join(It first, It last, const BasicCStringRef<wchar_t>& sep) {
  return ArgJoin<wchar_t, It>(first, last, sep);
}

#if FMT_HAS_GXX_CXX11
template <typename Range>
auto join(const Range& range, const BasicCStringRef<char>& sep)
    -> ArgJoin<char, decltype(std::begin(range))> {
  return join(std::begin(range), std::end(range), sep);
}

template <typename Range>
auto join(const Range& range, const BasicCStringRef<wchar_t>& sep)
    -> ArgJoin<wchar_t, decltype(std::begin(range))> {
  return join(std::begin(range), std::end(range), sep);
}
#endif

template <typename ArgFormatter, typename Char, typename It>
void format_arg(fmt::BasicFormatter<Char, ArgFormatter> &f,
    const Char *&format_str, const ArgJoin<Char, It>& e) {
  const Char* end = format_str;
  if (*end == ':')
    ++end;
  while (*end && *end != '}')
    ++end;
  if (*end != '}')
    FMT_THROW(FormatError("missing '}' in format string"));

  It it = e.first;
  if (it != e.last) {
    const Char* save = format_str;
    f.format(format_str, internal::MakeArg<fmt::BasicFormatter<Char, ArgFormatter> >(*it++));
    while (it != e.last) {
      f.writer().write(e.sep);
      format_str = save;
      f.format(format_str, internal::MakeArg<fmt::BasicFormatter<Char, ArgFormatter> >(*it++));
    }
  }
  format_str = end + 1;
}
}  // namespace fmt

#if FMT_USE_USER_DEFINED_LITERALS
namespace fmt {
namespace internal {

template <typename Char>
struct UdlFormat {
  const Char *str;

  template <typename... Args>
  auto operator()(Args && ... args) const
                  -> decltype(format(str, std::forward<Args>(args)...)) {
    return format(str, std::forward<Args>(args)...);
  }
};

template <typename Char>
struct UdlArg {
  const Char *str;

  template <typename T>
  NamedArgWithType<Char, T> operator=(T &&value) const {
    return {str, std::forward<T>(value)};
  }
};

} // namespace internal

inline namespace literals {

/**
  \rst
  C++11 literal equivalent of :func:`fmt::format`.

  **Example**::

    using namespace fmt::literals;
    std::string message = "The answer is {}"_format(42);
  \endrst
 */
inline internal::UdlFormat<char>
operator"" _format(const char *s, std::size_t) { return {s}; }
inline internal::UdlFormat<wchar_t>
operator"" _format(const wchar_t *s, std::size_t) { return {s}; }

/**
  \rst
  C++11 literal equivalent of :func:`fmt::arg`.

  **Example**::

    using namespace fmt::literals;
    print("Elapsed time: {s:.2f} seconds", "s"_a=1.23);
  \endrst
 */
inline internal::UdlArg<char>
operator"" _a(const char *s, std::size_t) { return {s}; }
inline internal::UdlArg<wchar_t>
operator"" _a(const wchar_t *s, std::size_t) { return {s}; }

} // inline namespace literals
} // namespace fmt
#endif // FMT_USE_USER_DEFINED_LITERALS

// Restore warnings.
#if FMT_GCC_VERSION >= 406
# pragma GCC diagnostic pop
#endif

#if defined(__clang__) && !defined(FMT_ICC_VERSION)
# pragma clang diagnostic pop
#endif

#ifdef FMT_HEADER_ONLY
# define FMT_FUNC inline
# include "format.cc"
#else
# define FMT_FUNC
#endif

#endif  // FMT_FORMAT_H_
Back to Top